CVITEH

CV180x CV181x Peripheral Driver
Operation Guide

Version: 1.0.1

Release date: 2023-02-06

Copyright © 2020 CVITEK Co., Ltd. All rights reserved.
No part of this document may be reproduced or transmiited in any form or by any means
without prior written consent of CVITEK Co., Ltd.

SOPRHGO

ERERR CV180x CV181x Peripheral Driver Operation Guide CONTENTS

Contents

1 Disclaimer 2
2 Ethernet Operation Guide 3
2.1 Operation Example o 3
2.2 IPv6 Description e e e 4
2.3 IEEE 802.3x Flow Control Function 4
2.3.1 Flow Control Function Description 4

2.3.2 Flow Control Function Configuration 5

2.3.3 Ethtool Configuration Interface Flow Control Function 5

3 USB Operation Guide 6
3.1 Operational Readiness 6
3.2 Uboot Operation Process i 6
3.2.1 The USB Host Operation Process Base on the Uboot 6

3.2.2 The USB Drive Operation Process Based on the Uboot 7

3.3 Linux Host e 8
3.3.1 USB 2.0 Host Operation Process 8

3.3.2 USB Pen Drive Operation Process 9

3.4 Linux Device e e e e e e e 10
3.4.1 USB 2.0 Device Operation Process 10

3.4.2 Examples of storage device operations in USB device 10

3.4.3 Example of Terminal Device Operation in USB device 11

3.4.4 Example of RNDIS Device Operation in USB Device 12

3.4.5 Operation Example of CVITEK USB GADGET in USB device 14

3.5 Points to Pay Attention to in Operation 15

4 SD/MMC card operation guide 16
4.1 Operation preparation e e e e 16
4.2 Operation Flow e 16
4.3 Operation example e e e e e e 17
4.4 Points to Pay Attention to in Operation 17

5 I2C Operation Guide 19
5.1 Operation Preparation 19
5.2 Operation Process e 19
5.3 Interface Rate Setting Instructions oL 19
5.3.1 Examples of I12C Read and Write Commands: 20

5.3.2 I2C Read-Write Program Example with Kernel Mode: 20

5.3.3 I12C Read-Write Program Example with User Mode: 21

6 SPI Operation Guide 23

6.1 Operation Preparation 23

SOPRHGO

BEERRK CV180x CV181x Peripheral Driver Operation Guide CONTENTS

6.2 Operation Process e 23
6.3 Operation Example o 23
6.3.1 SPI Read-Write Program Example with Kernel Mode: 23

6.3.2 SPI Read-Write Program Example In User Space 26

7 GPIO Operation Guide 29
7.1 GPIO Preparation 29
7.2 Operation Process o 29
7.3 Operation Example 29
7.3.1 GPIO Operation Command Example 29

7.3.2 GPIO Operation Program Example with Kernel Space 30

7.3.3 GPIO Operation Example with User Mode 32

8 VUART operation guide 33
8.1 The Operation Preparation of UART Is as Follows 33
8.2 Module Compilation e 33
8.3 Operation Example 33
8.4 Action Sample UART API Reference 34
8.4.1 uart dev init. e e 34

8.4.2 wuart_suspendl 34

8.4.3 uart Tresume e e e e e e e e 35

8.5 ioctl Configuration Instructions oL 35

9 Watchdog Operation Guide 37
9.1 Preparations of Watchdog Are as Follow: 37
9.2 Module Compile e 37
9.2.1 Operation Example 37

10 PWM Operation Guide 39
10.1 The Preparations for PWM Operation Are as Follow 39
10.2 Operation Process e e 39
10.3 Operation Example L 40
10.3.1 PWM Operation Commands Example 40

10.3.2 An Example of a Program to Operate Through File IO 40

11 ADC Operation Guide 42
11.1 The Preparations of ADC Operation Are as Follow 42
11.2 Operation Process e 42
11.3 Operation Example 0 42
11.3.1 ADC Operation Commands Example: 42

11.3.2 ADC Read-Write Operation Program Example with User Space 43

ii

SOPI

BEEMR CV180x CV181x Peripheral Driver Operation Guide CONTENTS

Revision History

Revision | Date Description

1.0.0 2022/10/31 | Initial version

1.0.1 2023/02/06 | Modified to be compatible with cv180x and cv181x
1.0.2 2023/02/23 | Modified gpio number

SOI-

Bl CV180x CV181x Peripheral Driver OperationCHARTER 1. DISCLAIMER

]. Disclaimer

CVITEH

Terms and Conditions

The document and all information contained herein remain the CVITEK Co., Ltd’ s (
“CVITEK”) confidential information, and should not disclose to any third party or use it in
any way without CVITEK’ s prior written consent. User shall be liable for any damage and
loss caused by unauthority use and disclosure.

CVITEK reserves the right to make changes to information contained in this document at any
time and without notice.

All information contained herein is provided in “AS IS” basis, without warranties of any kind,
expressed or implied, including without limitation mercantability, non-infringement and fitness
for a particular purpose. In no event shall CVITEK be liable for any third party’ s software
provided herein, User shall only seek remedy against such third party. CVITEK especially
claims that CVITEK shall have no liable for CVITEK’ s work result based on Customer’ s
specification or published shandard.

Contact Us

Address Building 1, Yard 9, FengHao East Road, Haidian District, Beijing, 100094,
China

Building T10, UpperCoast Park, Huizhanwan, Zhancheng Community, Fuhai
Street, Baoan District, Shenzhen, 518100, China

Phone +86-10-57590723 +86-10-57590724
Website https://www.sophgo.com/

Forum https://developer.sophgo.com/forum/index.html

https://www.sophgo.com/
https://developer.sophgo.com/forum/index.html

SO

EREMNR CV180x CV181x Periph€iHAPIER Qpekitidic RiNidé' OPERATION GUIDE

2 Ethernet Operation (Guide

2.1 Operation Example

The Ethernet module is built-in in the kernel by default, and there is no need to perform additional
insmod operation.

The operation steps of using ethernet port under kernel are as follows :

e Configure ip address and netmask

ifconfig eth0 xxx.xxX.XXX.XXX netmask XXX.XXX.XXX.XXX up

e Set default gateway

route add default gw XxXX.XXX.XXX.XXX

¢ Mount nfs

mount -t nfs -o nolock xxXx.XXX.XXX.xxx:/your/path /mount-dir

o Using tftp to upload and download files in shell
Be sure that there is tftp service software running on the server side
— download document: tftp -g -r [remote file name] [server ip]

Note: remote file name is the name of the file to be downloaded, and server IP is
the IP address of the server where the file download from (ex: tftp -g -r test.txt
192.168.0.11)

— upload document: tftp -p -1 [local file name] [server ip]

Note: local file name is the name of the file to be uploaded locally, and server
IP is the IP address of the target server where to upload (ex: tftp -1 -p test.txt
192.168.0.11)

Note: ¢v180x/cv181x Ethernet module don’ t support TSO function.

Note: The nfs tool will not be built into the file system by default. The user needs to add
the tool by themselves when necessary.

BN R CV180x CV181x Periph€iHAPIER Qpekitidic RiNidé' OPERATION GUIDE

2.2 IPv6 Description

The IPv6 functionality is disabled by default in the SDK package. To enable IPv6, kernel options
need to be modified. The specific steps are as follows:

1. Cv180x series
Modify
build/boards/cv180x/{board name}/linux/cvitek {board name} defconfig
Ex: build/boards/cv180x/cv1801c_wevb_0009a_ spinor/linux/

cvitek__cv1801c_wevb_0009a_ spinor_defconfig add or modify to CON-
FIG_T1PV6=y. Then recompile the kernel software.

2. Cv181x series
Modify
build/boards/cv181x/{board name}/linux/cvitek {board name} defconfig
Ex: build/boards/cv181x/ c¢v1811lc_wevb_0006a_spinor/linux/

cvitek__cv1811c_wevb_0006a_ spinor_defconfig add or modify to CON-
FIG_IPV6=y. Then recompile the kernel software.

The method for configuring an IPv6 environment is as follows:
e To configure an IPv6 address and gateway, use the following command:
#ip -6 addr add <IPv6 address>/IPv6 prefixlen dev <port name>
Ex: ip -6 addr add 2020:abc:102::8888/24 dev eth0
e [Pv6 address specified by Ping
#ping -6 <ipv6 address>
Ex: ping -6 2020:abc:102::6666

2.3 1IEEE 802.3x Flow Control Function

2.3.1 Flow Control Function Description

CV180x/CV181x Ethernet supports the flow control function defined by IEEE 802.3x. It achieves
the purpose of flow control by sending flow control frames and receiving the flow control frames
sent by the opposite end.

¢ Send flow control frame:

In the process of receiving the packets sent by the opposite site, if it is found that the current
receiving queue of the receiving site may not be able to receive the subsequent packets, the
local site will send the flow control frame to the opposite site, requiring the opposite site to
suspend sending packets for a period of time, so as to control the flow.

SOl

anp

E B &% CV180x CV181x Periph€iHAPIER Qpekitidic RiNidé' OPERATION GUIDE

¢ Receive flow control frame:

When the local site receives the flow control frame sent by the opposite site, the local site
will delay sending packets to the opposite site according to the flow control time description
within the frame, and then start sending after the flow control delay time. If the flow control
frame sent by the opposite site is received in the waiting process and the flow control time
described is 0, the transmission will be started directly.

2.3.2 Flow Control Function Configuration

The function of receiving flow control frame is off by default, and no software interface configu-
ration is provided.

Send flow control frame function related configuration file in
linux/drivers/net/ethernet/stmicro/stmmac/stmmac_ main.c

static int flow_ctrl = FLOW_OFF;
module_param(flow_ctrl, int, 0644);
MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");

static int pause = PAUSE_TIME;
module_param(pause, int, 0644);
MODULE_PARM_DESC(pause, "Flow Control Pause Time");

To enable the flow control function by default, you can modify the flow_ ctrl = FLOW__AUTO.

If you want to modify the default pause time, you can configure “pause” to the target time.

2.3.3 Ethtool Configuration Interface Flow Control Function

Users can enable the flow control function through the standard ethtool tool interface.

ethtool — a ethO0 command to view the flow control function status of ethQ port; the print is as
follows

ethtool -a ethO

Pause parameters for ethO:
Autonegotiate: on

RX: off

TX: off

Among them, RX flow control is off, TX flow control is off; the user can open or close TX flow
control through the following command:

ethtool -A ethO tx off (turn off TX flow control)
ethtool -A ethO tx on (turn on TX flow control)

Note: The ethtool will not be built into the file system by default. The user needs to add the
tool by themselves when necessary.

SO

EREMNR CV180x CV181x Peripheral DriveHAPeFHE0B3. GUIdB OPERATION GUIDE

3 USB Operation Guide

3.1 Operational Readiness

USB 2.0 Host/Device is prepared as follows:
e Use the U-boot and Kernel released by SDK.
e The file system can use the local file system ext4 or squashfs, or NFS.

e Shell script “run_usb.sh” .run_ usb.sh uses the USB ConfigF'S function of the kernel to
customize the USB device. Users can refer to and modify run_ usb.sh to change the param-
eters related to PID / VID and function. For detailed operation, refer to the kernel file ”
linux/Documentation/usb/gadget__configfs.txt” .

3.2 Uboot Operation Process

3.2.1 The USB Host Operation Process Base on the Uboot

Only pen drive and hard disk storage devices are supported in Uboot. USB host is off by default
in uboot. You must enable relevant config.

Stepl. enable USB related driver under uboot:

CONFIG_USB=y
CONFIG_DM_USB=y
CONFIG_USB_STORAGE=y
CONFIG_CMD_USB=y

Step2.
2.1) Cv180x series modify include/configs/cv180x-asic.h.
2.2) Cv181x series modify include/configs/cv181x-asic.h, newly add the definition:

#define CONFIG_USB_DWC2
#define CONFIG_USB_DWC2_REG_ADDR 0204340000

Step3. Compile the drivers. Compile uboot to generate fip.bin

SOl

i3
anp

E B &% CV180x CV181x Peripheral DriveHApErAk0R. GUIB OPERATION GUIDE

build_uboot

3.2.2 The USB Drive Operation Process Based on the Uboot

The preparation before starting the Uboot USB Host:

USB Host base on the Uboot does not support hot plug. You must plug in the device before
starting the USB host. If a USB Hub is installed on the platform, ensure that the Hub’ s power
source is enabled and the Switch in the USB path is switched to the Host connector.

Take cv180x as an example (the corresponding method is also applicable to cv181x) :

Power the platform, access the uboot Command Line Interface, and run the usb start command
to check whether the identification is successful.

phobos_c906# usb start
starting USB...
USBO: Core Release: 4.00a
scanning bus O for devices... Device NOT ready
Request Sense returned 02 3A 00
2 USB Device(s) found
scanning usb for storage devices... 2 Storage Device(s) found

If an enumeration error occurs after “usb start” or the device cannot be detected, run the
“setenv usb__pgood_ delay XXX” command on the uboot command- line interface (CLI), you can
adjust the timeout value for a device that is preheated slowly or connected to the Hub. The
recommended value ranges from 1000 to 3000.

After completing the recognition, run the “usb tree” command to view the recognition rate. The
following is an example of connecting a USB host to a Hub and a storage device:

phobos_c906# usb tree
USB device tree:
1 Hub (480 Mb/s, OmA)
| U-Boot Root Hub
I
+-2 Mass Storage (480 Mb/s, 500mA)

Generic USB3.0 Card Reader 000000001532

Initialization and application:
After completing the recognition you can enter the follow operations:
Stepl: check the device information

o CLI execute: usb info [dev], You can view information about all devices on the
controller. The following is an example.

phobos_c906# usb info 1
config for device 1
2: Mass Storage, USB Revision 2.10

(continues on next page)

=0

= U

{il;
111
(ayay
SH
v
o
xXH

CV180x CV181x Peripheral DriveHAPeFHE0B3. GUIdB OPERATION GUIDE

(continued from previous page)

- Generic USB3.0 Card Reader 000000001532
Class: (from Interface) Mass Storage
PacketSize: 64 Configurations: 1
- Vendor: 0x05e3 Product 0x0749 Version 21.50
Configuration: 1
- Interfaces: 1 Bus Powered 500mA
Interface: 0
- Alternate Setting O, Endpoints: 2
- Class Mass Storage, Transp. SCSI, Bulk only
- Endpoint 1 In Bulk MaxPacket 512
- Endpoint 2 Out Bulk MaxPacket 512

Step2: Read the pen drive

e Run: usb read addr blk# cnt, in command line to read the data with the starting
address of blk and the size of cnt to the DDR address of addr, as shown in the
following example:

phobos_c906# usb read 0x90000000 0 10

USB read: device O block # 0, count 16 ... 16 blocks read: OK

Step3: Write the pen drive

e Run: usb write addr blk# cnt, in command line to write the data with DDR
address addr and size cnt to the location with the starting address blk of the
storage device. The example is as follows:

phobos_c906# usb write 0x90000000 2000 2000
USB read: device O block # 8192, count 8192 ... 8192 blocks write: UK

3.3 Linux Host

3.3.1 USB 2.0 Host Operation Process

Step2: start the platform and load ext3 or squashfs. (or use the NFS)
Step3: load the relevant drivers

insmod usb-common.ko

insmod usbcore.ko

insmod udc-core.ko

insmod roles.ko

insmod dwc2.ko
step4: set USB role

echo host > /proc/cviusb/otg_role

SOI-

EEMR CV180x CV181x Peripheral DriveHApErAk0R. GUIB OPERATION GUIDE

3.3.2 USB Pen Drive Operation Process

Insert detection:

Insert the USB drive directly and observe whether the enumeration is successful. Normally, the
UART is printed as:

72.061964] usb 1-1: new high-speed USB device number 2 using dwc2
72.315816] usb-storage 1-1:1.0: USB Mass Storage device detected

72.335934] scsi hostO: usb-storage 1-1:1.0

73.363027] scsi 0:0:0:0: Direct-Access Generic STORAGE DEVICE 1532,
—PQ: O ANSI: 6

[73.374407] sd 0:0:0:0: Attached scsi generic sgO type 0

[73.558597] sd 0:0:0:0: [sda] 30253056 512-byte logical blocks: (15.5 GB/14.
—4 GiB)

[73.566961] sd 0:0:

Lo B s B e B |

0:0: [sda] Write Protect is off
[73.571922] sd 0:0:0:0: [sda] Mode Sense: 21 00 00 00
[73.577899] sd 0:0:0:0: [sda] Write cache: disabled, read cache: enabled,
—doesn't support DPO or FUA
[73.593961] sda: sdail
[73.602607] sd 0:0:0:0: [sda] Attached SCSI removable disk

o O O

sdal represents the first partition on the USB drive or portable hard drive. When there are
multiple partitions, the words sdal, sd2, sda3, etc. will appear

Initialization and application:
After inserting the storage device, perform the following operations:

In sdXY, X is the disk number and Y is the partition number. Please modify it
according to the specific system environment.

e The device node for partition command operation is sdX, example: $fdisk
/dev/sda.

o The specific partition formatted with mkdosfs tool is sdXY: ~$ mkdosfs -F 32
/dev/sdal.

o The specific partition of mount is sdXY: ~§ mount /dev/sdal /mnt
1. View partition information

o Run the command “Is /dev” to view the system device files, and if there
is no partition information sdXY, there is no partition. Please partition the
storage device with fdisk and go to step 2.

e If there is partition information sdXY, the pen drive partition has been
detected and entered step 2.,

2. View formatted information
o If it is not formatted, use mkdosfs to format and then go to step 3.
o If formatted, go to step 3

3. Mount the directory

e Run the “mount /dev/sdaXY /mnt” mount directory.,

HEMK CV180x CV181x Peripheral DriveHApErAk0R. GUIB OPERATION GUIDE

4. Read and write the storage device.

3.4 Linux Device

3.4.1 USB 2.0 Device Operation Process

Stepl. Compile the kernel driver module of USB2.0 Device

o Enter the following path of menuconfig and configure it as follows.

Device Driver --->
[*] USB support --->
<*¥> USB Gadget Support --->
<M> USB functions configurable through configfs
[+] Abstract Control Model (CDC ACM)
[+] Mass storage

e Compile kernel module and generate .ko file
Step 2: Start the platform, load ext4 or squashfs file system, or use NFS

Step 3: When the platform is used as a device, the USB2.0 device module must be loaded to be
recognized as a USB device on the Host side. Please refer to “operation example” for specific
operation.

All USB 2.0 device drivers are listed below.

3.4.2 Examples of storage device operations in USB device

Step4: As a Device, the platform supports both eMMC and SD storage media as follows:
Step5: Load below kernel modules.
insmod configfs.ko
insmod usb-common.ko
insmod udc-core.ko
insmod libcomposite.ko
insmod usbcore.ko
insmod roles.ko
insmod dwc2.ko
step6: The paths of USB Device related modules under kernels are:
drivers/usb/gadget /libcomposite.ko
drivers/usb/gadget/function/usb_f mass_ storage.ko

fs/configfs/configfs.ko

10

BN R CV180x CV181x Peripheral DriveHApErAk0R. GUIB OPERATION GUIDE

step7: switch otg controller to device mode
echo device > /proc/cviusb/otg_role

step8: run shell script “usb__usb.sh”
run__usb.sh probe msc /dev/mmcblkXY
run_usb.sh start

mmcblkXY is the Yth partition in eMMC or SD of the Xth disk. Please select it
according to your specific situation.

Step9: The path of the USB Device related module under rootfs is: /etc/run_ usb.sh

Stepl0: By connecting the platform to the Host side through USB, the platform can be recognized
as a USB storage device on the Host side, and the corresponding device nodes can be generated
in the / dev directory.

Stepll: On the Host side, the platform can be treated as a common USB storage device, parti-
tioning, formatting, reading and writing.

3.4.3 Example of Terminal Device Operation in USB device

The platform acts as a device as a terminal device by doing the following:
Setpl: insmod below kernel modules.
insmod configfs.ko
insmod libcomposite.ko
insmod u_ serial.ko
insmod usb_f acm.ko
insmod usb_{ serial.ko
The paths of USB Device related modules under kernels are:
o drivers/usb/gadget/libcomposite.ko
o drivers/usb/gadget/function/usb_f serial.ko
o drivers/usb/gadget/function/usb_f acm.ko
o drivers/usb/gadget/function/u_ serial.ko
o fs/configfs/configfs.ko
Switch otg controller to device mode
echo device > /proc/cviusb/otg role
run script “run_ usb.sh” run_ usb.sh probe acm run_ usb.sh start
The path of the USB Device related module under rootfs is:

/etc/run__usb.sh

11

BN R CV180x CV181x Peripheral DriveHApErAk0R. GUIB OPERATION GUIDE

Step2: By connecting the platform to the Host through USB, the platform can be recognized as
a USB terminal device in the Host side, and the corresponding device node ttyACMX, X, is the
same type of terminal device number, is generated in the /dev directory. ttyGSY is generated in
the device side /dev directory, Y is the same type of terminal device number.

Host and Device can transmit data through the terminal device.

3.4.4 Example of RNDIS Device Operation in USB Device

The platform acts as an RNDIS device as follows

<<<<<<< HEAD Step3. Load below kernel modules. =======Stepl. ins-
mod below kernel modules. >>>>>>> 8360b7f-[fix](peripheral): Fix errors of Periph-
eral Driver Operation_ Guide

insmod configfs.ko
insmod libcomposite.ko
insmod u__ether.ko
insmod usb_{ ecm.ko
insmod usb_f eem.ko
insmod usb_f rndis.ko
The paths of USB Device related modules under kernels are:
o drivers/usb/gadget /libcomposite.ko
o drivers/usb/gadget/function/usb_f ecm.ko
o drivers/usb/gadget/function/usb_f ecm.ko
o drivers/usb/gadget/function/usb_f rndis.ko
o drivers/usb/gadget/function/u_ ether.ko
o fs/configfs/configfs.ko
Switch otg controller to device mode
echo device > /proc/cviusb/otg role
run script “run_ usb.sh” run_ usb.sh probe rndis run_ usb.sh start
The path of the USB Device related module under rootfs is:
/etc/run__usb.sh

Step2: By connecting the platform to USB Host size via USB, you can recognize the platform as
a USB Remote NDIS device on the Host side and install the Remote NDIS Compatible Device
driver on Windows.

12

SOPRHGO

EEMNRK CV180x CV181x Peripheral DriveHAp&rAk0R. GiIdB OPERATION GUIDE

> § NoMachine USB Host Adapter
K7 Other devices
E? ARfcomm
“ AudioWear
“ AudioWear Voice

<

el he

E4A RNDIS

> Ports (C Update driver

> B3 Print g Disable device

> n Process X .

- . Uninstall device

> l‘-; Security

’ f Softwar Scan for hardware changes
> B Softwar

w

i Sound, Properties
Sai Storage controllers

W

K= System devices

W

i Universal Serial Bus controllers

< B Update Drivers - Remote NDIS Compatible Device

Select the device driver you want to install for this hardware.

h Select the manufacturer and model of your hardware device and then click Next. If you have a
disk that contains the driver you want to install, click Have Disk.

Manufacturer * || Model -

Mellanox Technologies Ltd. [=] OpenCable Receiver Preproduction Test Device

Microchip Technology Inc. [RAS Async Adapter

Microsoft [=JRemote NDIS based Internet Sharing Device

g & (= Surface Ethernet Adapter N
[Z] This driver is digitally signed. Have Disk...

Tell me why driver signing is important

Next Cancel

Step3: Set IP Address on Single Board, for example” ifconfig usb0 192.168.3.101 up”
Step4: Set the IP address on Windows.

13

SOPRHGO

Bl CV180x CV181x Peripheral DriveHApdrkikod. GUidB OPERATION GUIDE
L‘ _Common_TW-AI-VPN-Client - L" APM Network Access "'. Ethernet
- ‘-;- 61.220.100.79 - ‘.‘,_ Disconnected &"f Enabled
5-‘ Disconnected 5-‘ F5 Networks VPN Adapter & Remote NDIS Compatible Device
11 U Ethernet Pro perties X Internet Protocol Version 4 (TCP/IPv4) Properties X
Networking Sharing General
Connect using You can get IP settings assigned automatically if your network supports
thi lity. Otherwise, d to ask twork administrator
@ Remote NDIS Compatible Device e e e i g e pernchk st
Configure...

() Obtain an IP address automatically

This connection uses the following tems @ 1iise the folowing 1P addrass:;

& B Clent for Microsoft Networks ~ IP address: [192.168. 3 .13
¥ 8 VMware Bridge Protocol]
v "B File and Printer Sharing for Microscft Netwarks Subnet mask: 255 .255 .255 . 0 |
¥ 8 VirnualBox NDISE Bridged Networking Driver
Default gate : . . .

[TS Packet Scheduler serautgatenay [|
¥ g Intemet Protocol Version 4 (TCP/IPv4) . o
0 2 Microsoft Network Adapter Mutiplexar Protocol ~ Obtain DNS server address automatically
< > (®) Use the following DNS server addresses:

Install... Uninstal Properties Breferred DNS server: [— : :
Description Alternate DNS server: . . .

Transmission Control Protocol/Intemet Protocol. The defaut
wide area network protocol that provides communication
across diverse interconnected networks [validate settings upon exit

o T [oc] conce

Host and Device can transmit data through RNDIS devices.

3.4.5 Operation Example of CVITEK USB GADGET in
USB device

The platform works as a Device using a custom CVTEK USB Gadget (CVG) as follows:

Stepl: Insert below kernel modules
insmod configfs.ko
insmod libcomposite.ko
insmod usb_f cvg.ko
The paths of USB Device related modules under kernels are:
o drivers/usb/gadget/libcomposite.ko
o drivers/usb/gadget/function/usb_f cvg.ko
o fs/configfs/configfs.ko
Switch otg controller to device mode
echo device > /proc/cviusb/otg_role
run script “run__usb.sh”
run_ usb.sh probe cvg
run__usb.sh start

The path of the USB Device related module under rootfs is:

14

SOPI

EEMR CV180x CV181x Peripheral DriveHApErAk0R. GUIB OPERATION GUIDE

/etc/run__usb.sh

Step2: Connect the platform to the Host side via USB and use Zadig to install libusb (WinUSB)
as the driver of the device.

2 Zadig — X
Device Options Help

USB Com Port v [Cedit
Driver ‘wmusa (v6.1.7600.16385) | m |WinUsB (v6.1.7600.16385) ‘ : } More Information
WinUSB (lbusb)
USB ID 1003 | lipusb-win32
s Reinstall Driver] libusbk
wem 2 @ WinUSB (Microsoft

Step3: Run test program sample_cvg [#TEST] on a single board.

Step4: Execute cvg/pctool/gen_patterns.sh on PC generates test Patterns. Execute ”
cvg/pctool/cvg_test.py” to start testing.

Stepd: Refer to the CVITEK USB Gadget Usage Guide.docx for detailed usage files.

3.5 Points to Pay Attention to in Operation

e The following points should be noted in the operation: The system is preset to be Host
mode after boot-up. To use Device mode, modules must be insmoded and USB Configk'S
scripts executed. Before switching to device mode, users must confirm the following:

— The USB Cable is not connected to the Host.

— The hardware on the platform has to switch to the corresponding USB mode. For
example, before switching to Device mode, turn off the USB 5V power supply on the
platform. If there is a Hub on the platform, turn off the Hub power and switch the
path to Device mode connector

o After switching to Device mode, to use Host mode again, users must restart the platform

¢ When the platform is used as a terminal device, due to the TTY terminal characteristics, if
a large amount of data is transmitted in a short time, it may cause data loss. Users should
be aware of this limitation when using this feature.

e When reading a pen drive using USB Host under Uboot, be aware that if there is a Hub on
the platform, you must turn on the Hub power and switch the path to the correct Connector.

15

SO

EREMNR CV180x CV181x ParifhrdlHRiter SIpehidién CGARID OPERATION GUIDE

4: SD/MMC card operation guide

4.1 Operation preparation

e Use U-boot and kernel in SDK
o File system:

For SD/MMC cards, the SDK supports only the FAT file system, which can be read and
written. After the kernel is started, mount it to the /mnt/sd directory or a directory as
required.

o Partitioning can be done through the fdisk tool.
o Cv180x/cv181x SD supports 2.0 and 3.0:
At present, the cv180x/cvi81x SD/MMC card supports only 3.3V VDDIO. Please Note that!

4.2 Operation Flow

1) By default, all SD/MMC driver modules have been compiled into the kernel. There is no
need to run any additional loading commands.

2) Insert the card and power it on. You can view the card content by running fat commands
in the U-boot.

3) When boot platform reaching the kernel, response nodes /dev/mmcblk0 and
/dev/mmcblkOpl are automatically scanned and identified.

4) In Uboot SD does not support hot plugging, but the kernel supports hot plugging. You can
insert an SD card into the kernel to perform operations on the SD card. For details, see 3.3
Operation Examples.

16

BN R CV180x CV181x ParifhrdlHRiter SIpehidién CGARID OPERATION GUIDE

4.3 Operation example

Examples of read and write operations for SD cards are as follows.
Initialization and application:

After the SD card is inserted, do the following (X below is the partition number whose value is
determined by the fdisk tool when partitioning):

The specific directory for the specified fdisk operation is: ~ $ fdisk/dev/mmcblk0
Step 1. Check partition information

a. If pl is not displayed, the SD card is not partitioned yet. Please partition with fdisk tool
on Linux or format the SD card on Windows system before proceeding to Step 2.

b. If the partition information P1 is displayed, the SD card has been detected and partitioned
and can be mounted in step 2.

Step 2. Mount

1. ~ $ mount /dev/mmcblklpX /mnt/sd , This command mounts the Xth partition on the
SD card to the /mnt/sd directory

4.4 Points to Pay Attention to in Operation

1. Make sure that the SD card has good connection with the slot hardware pin. If the con-
nection is not good, there may be detection errors or error information related to read and
write data errors, which may lead to read and write failures.

2. Each time an SD card is inserted, a mount operation is required to read and write the
SD card. If the SD card is already mounted to the file system, you must do an umount
operation before unplugging, otherwise you may not see the SD card partition after the
next insertion of the SD card. In addition, unloading actions are also required for abnormal
card unplugging.

3. You must ensure that the SD card has created a partition and formatted it as FAT or
FAT32 file system (using the fdisk command under LINUX or the disk management tool
under Windows).

4. Operation not allowed during normal operation:

e Do not unplug the SD card when reading or writing it, otherwise some error message
will be printed, and the file system in the card may be damaged.

o If the current directory is under a mounted directory such as /mnt/sd, the unmount
operation cannot be performed. You must leave the current directory such as /mnt/sd
to perform the umount operation.

e When there are reading or writing operation on mounted directories in the system,
it cannot be umount until those operations have been completely ended. The task
of operating mounted directories must be completely completed before umount can
proceed properly.

e When an exception occurs during the operation:

17

CV180x CV181x ParifhrdlHRiter SIpehidién CGARID OPERATION GUIDE

. If the file system is damaged due to reading and writing data or other unknown

reasons, there may be file system error messages when reading and writing SD
cards. Umount, unplug, insert and mount the card again to read and write SD
cards normally again.

. Because the initialization of SD card takes some time for the detection/remove

process, it is possible that no SD card can be detected if the card is inserted
quickly after the card is unplugged.

. If the card is unplugged abnormally during the test, the user needs to press ctrl4-c

to exit back to the kernel shell, otherwise the error message will be printed con-
tinuously.

When there is more than one partition on the SD card, you can switch between
mounting partitions by mounting, but make sure that the number of mount oper-
ations is equal to the number of unmount operations to ensure that all mounted
partitions are completely umount.

18

i # R CV180x CV181x Peripheral Drivee DdEEEBn5Guide OPERATION GUIDE

5 I2C Operation Guide

5.1 Operation Preparation

12C is prepared for operation as follows:

e Use the kernel released by SDK,

5.2 Operation Process

¢ Load the kernel. The default I12C-related modules are all built into the kernel, and no install
commands need to be executed.

e The I2C devices mounted on the I2C controller can be read and written by running the 12C
read and write command under the console or by writing the 12C read and write program
in kernel or user mode.

5.3 Interface Rate Setting Instructions

If you want to change the interface rate, you need to modify the “clock_frequency” of i2c node
in build/boards/default/dts/cv180x/cv180x__base.dtsi or

build /boards/default/dts/cv181x/cv181x_ base.dtsi, and recompile the kernel.

i2¢0: 12c@04000000 {
compatible = "snps,designware-i2c";
clocks = <&clk CV180X_CLK_I2C>;
reg = <0x0 0x04000000 0x0O 0x1000>;
clock-frequency = <400000>;

#size—-cells = <0z0>;
#address—cells = <0z1>;
resets = <&rst RST_I2C0>;
reset—-names = "i2c0";

19

SO

EREMNR CV180x CV181x Peripheral DrivetDdBEEBn5Guide OPERATION GUIDE

5.3.1 Examples of I12C Read and Write Commands:

You can send relevant iic commands in linux terminal to detect bus devices and read or write the
i2¢ devices in bus.

1. i2cdetect -1
Detect iic buses in system. (It can be i2¢-0, i2¢-1, i2¢-2, i2¢-3, i2c-4 in cv180x)
2. i2cdetect -y -r N

Detect all the address of devices which are connected with i2¢-N bus. The example below
is used detect devices which are connected with i2c-2 bus.

[root@cvitek]~# i2cdetect -y -r 2
O 1 2 3 4 5 6 7 8 9 a b ¢ d e T
00: R I

1155 =2 2o om oo oo e G Sc oo ca cs
55 2o am s oo oo s s os oa 2R es

30: <= -= -m am am - -
40: <= -= mm am am -

5O: == -= -m -m am -

B0: - -= -m —m e -

70: <= -= m am am -
[root@cvitek]~#]

3. i2cdump -f -y N M

View the values of all registers in the device with address M on i2¢-N
4. i2cget -f -y 0 0x3c 0x00//

Reads the value of register 0x00 on a device at address 0x3c on i2¢c-0
5. i2cset -f -y 0 0x3c 0x40 0x12//

Write to register 0x40 on device at address Ox3c on i2c¢-0

5.3.2 I2C Read-Write Program Example with Kernel Mode:

This example demonstrates how to read and write 12C device in the kernel space.

Step 1. Assuming that the I2C device is known to be mounted on I12C controller 0, call
i2c_get adapter() function to get the I2C controller structure adapter:

adapter = i2c_ger_adapter(0);

Step 2. Through i2c_new_ device() function to associate the I12C controller with the 12¢ device
to obtain the client structure of the I12C device:

client = i2c_new_device(adapter, &info)

Note: The info structure provides the device address for i2c

Step 3. Call the standard read and write functions provided by the 12C core layer to read and
write to device:

20

SOl

i3
anp
SH

4 5% CV180x CV181x Peripheral Drivee DdEEEBn5Guide OPERATION GUIDE

ret i2c_master_send(client, buf, count);

ret i2c_master_recv(client, buf, count);

Note: Client is the client structure obtained in step 2, buf is the register address and
data to be read and written, count is the length of buf.

The code example is as follows:

// Announce a I2C device named "dummy" with device address 0x3c
static struct i2c_board_info info = {

I2C_BOARD_INFO("dummy", 0x3C),
¥

static struct i2c_client *client;

static int cvi_i2c_dev_init(void) {
// Assign I2C Controller Pointer
struct i2c_adapter *adapter;

adapter = i2c_get_adapter(0);

client = i2c_new_device(adapter, &info);
i2c_put_adapter(adapter) ;

return O;

}

static int i2c_dev_write(char *buf, unsigned int count) {
int ret;

ret = i2c_master_write(client, buf, count);
return ret;
static int i2c_dev_read(char *buf, unsigned int count) {

int ret;

ret = i2c_master_recv(client, buf, count);
return ret;

5.3.3 1I2C Read-Write Program Example with User Mode:

This operation example reads and writes I12C device through the 12C reader in the user space.

Step 1. Open the device file corresponding to the 12C bus and get the file descriptor:

i2¢_file = open("/dev/i2c-0", O_RDWR);
if (i2¢c_file < 0) {
printf ("open I2C device failed /d\n", errno);

(continues on next page)

21

SOR

EEMR CV180x CV181x Peripheral DrivetDdBEEBn5Guide OPERATION GUIDE

(continued from previous page)

return -ENODEV;

Step 2. Read and write data:

ret = ioctl(file, I2C_RDWR, &packets);
if (ret < 0) {
perror ("Unable to send data");
return ret;

Note: Read and write operations need to be specified on flags

struct i2c_msg messages[2];
int ret;

/*
* In order to read a register, we first do a "dummy write" by writing
0 bytes to the register we want to read from. This is similar to
* the packet in set_i2c_register, except it's 1 byte rather than 2.
*/
outbuf = reg;
messages [0] .addr = addr;
messages [0] .flags = 0;
messages[0] .1len = sizeof (outbuf);
messages [0] .buf = &outbuf;

*

/* The data will get returned in this structure */
messages[1] .addr = addr;

/% | I2C_M_NOSTART */

messages[1] .flags = I2C_M_RD;

messages[1] .len = sizeof (inbuf);

messages[1] .buf = &inbuf;

22

SC

g R B CV180x CV181x Peripheral Drive@lDpBEERI6G USR] OPERATION GUIDE

6 SPI Operation Guide

6.1 Operation Preparation

The preparation for operation of SPI is as follows:

e Kernel and file system using published SDK. File systems can use squashF'S or ext4 pub-
lished by the SDK. You can also mount to NFS over the network via the local file system

6.2 Operation Process

e Load the kernel. The default SPI-related modules are all built into the kernel and no install
commands need to be executed.

e Running SPI read and write commands under the console or writing SPI read and write
programs in kernel or user space which allows you to read and write SPI devices mounted
on the SPI controller.

6.3 Operation Example

6.3.1 SPI Read-Write Program Example with Kernel Mode:

This operation example demonstrates how to read and write to SPI device through SPI reader
and writer in kernel space.

Step 1. Call the SPI core-level function spi_busnum_ to_master(), to get a description of the
SPI controller architecture:

master = spi__busnum__to_ master(bus_num);
// bus_num is the controller number of the SPI device for reading and writing
// master is the spi_master struct type pointer to describe the SPI controller.

Step 2. Call the SPI core layer function by the name of the spi device on the core layer to get
the structure that is mounted on the SPI controller to describe the SPI device:

23

SOl

anp

E B &% CV180x CV181x Peripheral Drive? HDPpBIEEHBn6Gusdd OPERATION GUIDE

snprintf(str, sizeof(str), “%s.%u” , dev_name(&master->dev), cs);

dev = bus_ find_device_ by name(&spi_bus_ type, NULL, str);

spi = to_spi_ device(dev);

//spi_buf_type is a bus_ type structure type variable that describes the SPI bus
// spi is to describe the SPI peripheral spi_device structure type pointer

Step 3. Calling the SPI core layer function will spi_transfer added to spi_message queue.
spi_message_init(&m)

spi_message add_ tail(&t, &m)
//t is spi__transfer structure type variable
//m isspi__message structure type variable

Step 4. Call the SPI Core Layer Read-Write function to read and write to device
status = spi_sync(spi, &m);
status = spi__async(spi, &m)
// spi is the spi__device structure type pointer to describe the SPI device
//spi_sync function is used to reads and writes SPI synchronously
//spi_async function is used to reads and writes SPI asynchronous

The code example is as follows: This code sample is for reference only, not for practical use.

// Incoming SPI controller bus number and processor number
static unsigned int busnum;

module_param(busnum, uint, 0);

MODULE_PARM_DESC(busnum, "SPI bus number (default=0)");

static unsigned int cs;

module_param(cs, uint, 0);

MODULE_PARM_DESC(cs, "SPI processor select (default=0)");
extern struct bus_type spi_bus_type;

// Declare the structure of the SPI controller static struct spi_master #*master;

// Declare the structure of SPI peripherals
static struct spi_device *spi_device;

static int __init spidev_init(void) {
char *spi_name;

struct device *spi;

master = spi_busnum_to_master (busnum) ;
spi_name = kzalloc(strlen(dev_name(&master->dev)), GFP_KERNEL);

if (!spi_name)

(continues on next page)

24

EREMNR CV180x CV181x Peripheral Drive? HDPpBIEEHBn6Gusdd OPERATION GUIDE

(continued from previous page)

return -ENOMEM;

snprintf (spi_name, sizeof (spi_name), "¥s.%u", dev_name(&master->dev), cs);
spi = bus_find_device_by_name (&spi_bus_type, NULL, spi_name);
if (spi == NULL)
return -EPERM;

spi_device = to_spi_device(spi);
if (spi_device ==NULL)
return -EPERM;

put_device(spi);
kfree(spi_name);

return O;

int spi_dev_write(, void *buf, unsigned long len, int buswidth)
{
struct spi_device *spi = spi_device;
struct spi_transfer t = {
.speed_hz = 2000000,
.tx_buf = buf,
// buf needs to fill in device addr, register addr, write data and
—other information according to peripheral device specifications
.len = len,
s
struct spi_message m;
spi->mode = SPI_MODE_O;

if (buswidth == 16)

t.bits_per_word = 16;
else
t.bits_per_word = 8;

if ('spi) {
return - ENODEV;
}

spi_message_init (&m) ;
spi_message_add_tail(&t, &m);
return spi_sync(spi, &m);

int spi_dev_read(unsigned char devaddr, unsigned char reg_addr, void *buf,
—size_t len)

{

struct spi_device *spi = spi_device;

(continues on next page)

25

EREMNR CV180x CV181x Peripheral Drive? HDPpBIEEHBn6Gusdd OPERATION GUIDE

(continued from previous page)

int ret;
u8 txbuf[4] = { 0, };
struct spi_transfer t = {
.speed_hz = 2000000,
.rx_buf = buf,
.len = len,
+;
struct spi_message m;
spi->mode = SPI_MODE_O;

if ('spi) {
return -ENODEV;

}
txbuf [0] = devaddr;

txbuf[1] = 0;

txbuf [2] = reg_addr; //txbuf[1] &txbuf[2] Fill in 1 byte or 2 bytes

—depending on the device bit width, this example is 2 bytes bit width

t.tx_buf = txbuf;

spi_message_init (&m) ;
spi_message_add_tail(&t, &m);
ret = spi_sync(spi, &m);

return ret;

6.3.2 SPI Read-Write Program Example In User Space

This operation example reads and writes to SPI device mounted on SPI controller 0 in user space.
(Specific implementations can refer to tools/spi/spidev_ test.c)

Step 1: Open the device file corresponding to the SPI bus to get the file descriptor.

static const char *device = "/dev/spidev32766.0";

fd = open(device, O_RDWR);
if (fd < 0)
pabort("can't open device");

Note: The default node for peripherals mounted on SPI Controller 1 is
“dev/spidev32765.0”

The default node for peripherals mounted on SPI Controller 2 is “dev/spidev32764.0”
The default node for peripherals mounted on SPI Controller 3 is “dev/spidev32763.0”

Simply replace the node name and the rest will be the same as the device mounted
on the SPI controller 0.

Step 2: Setting SPI transfer mode through ioctl:

26

SORIH

EEMR CV180x CV181x Peripheral Drive? HDPpBIEEHBn6Gusdd OPERATION GUIDE

/*
* spi mode
*/
ret = ioctl(fd, SPI_IOC_WR_MODE32, &mode);
if (ret -1)
pabort("can't set spi mode");
ret = ioctl(fd, SPI_IOC_RD_MODE32, &mode);
if (re -1)
pabort("can't get spi mode");

Note: Refer to the following figure or the kernel code for the model value configuration
include/linux/spi/spi.h,

Ex. mode = SPI_MODE_3 | SPI_LSB_ FIRST;

#define SPI_CPHA 0201 /* clock phase */
#define SPI_CPOL 0z02 /* clock polarity */
#define SPI_MODE_0 (0/0) /* (original MicroWire) */
#define SPI_MODE 1 (0/SPI_CPHA)
#define SPI_MODE_ 2 (SPI_CPOL/0)
#define SPI_MODE 3 (SPI_CPOL/SPI_CPHA)
Step 3: Setting SPI transmission bandwidth through ioctl:
/*
* bits per word
*/
ret = ioctl(fd, SPI_IOC_WR_BITS_PER_WORD, &bits);

if (ret == -1)
pabort("can't set bits per word");

ret = ioctl(fd, SPI_IOC_RD BITS_PER_WORD, &bits);
if (ret -1)
pabort("can't get bits per word");

Step 4: Set SPI transfer speed through ioctl (generally recommended speed = 25M):

/%
* max speed hz
*/
ret = ioctl(fd, SPI_IOC_WR_MAX_SPEED HZ, &speed);
if (ret == -1)
pabort("can't set max speed hz");

ret = ioctl(fd, SPI_IOC_RD_MAX_SPEED_HZ, &speed);
if (re -1)
pabort("can't get max speed hz");

Step 5: Read and write data using ioctl:

27

SOPRHGO

ERERR CV180x CV181x Peripheral Drivéf ipBrEEBn6Gusdd OPERATION GUIDE

ret = ioctl(fd, SPI_IOC_MESSAGE(1), &tr);
if (ret < 1)
pabort("can't send spi message");

Note: tr transmits the first address of the spi_ioc structure array of a message.

28

SC

B R CV180x CV181x Peripheral DrEHAGHER1Gn GR® OPERATION GUIDE

7 GPIO Operation Guide

7.1 GPIO Preparation

e Use the kernel released by SDK.

7.2 Operation Process

o By default, the GPIO-related kernel modules are built into the kernel and no load commands
need to be executed.

e GPIO can be input mode or output mode by executing GPIO read or write commands
under the console or by calling GPIO APIs in kernel or user space APP.

7.3 Operation Example

7.3.1 GPIO Operation Command Example

Step 1: Use the echo command in the console to export GPIO number N for manipulation:
echo N > /sys/class/gpio/export

N Indicates the number of the GPIO to be operated. GPIO number = GPIO group
number + offset value.

Taking GPIO1_ 2 pin in the schematic diagram as an example, GPIO1 corresponds
to GPIO group number 448 and offset value 2.

So the GPIO number N is 448 + 2 = 450

The corresponding group number is as below:
GPIOO0 corresponds to the linux group number 480
GPIO1 corresponds to the linux group number 448
GPIO2 corresponds to the linux group number 416
GPIO3 corresponds to the linux group number 384

29

SO

EREMNR CV180x CV181x Peripheral Dr&HAQHarRGn GRi© OPERATION GUIDE

PWR,__GPIO corresponds to the linux group number 352
After echo N > /sys/class/gpio/export, generate the directory: /sys/class/gpio/gpioN
Step 2: Use the echo command in the console to set the GPIO direction:
for input: echo in > /sys/class/gpio/gpioN/direction
for output: echo out > /sys/class/gpio/gpioN/direction
For example:
set GPIO1 2 (the number is 450) to input mode:
echo in > /sys/class/gpio/gpio450/direction
set GPIO1_ 2 (the number is 450)to output mode:
echo out > /sys/class/gpio/gpio450/direction

Step 3: Use the cat commands in the console to read GPIO input values or use the echo commands
to set GPIO output values :

check the input value:
cat /sys/class/gpio/gpioN/value
output low:
echo 0 > /sys/class/gpio/gpioN/value
output high:
echo 1 > /sys/class/gpio/gpioN/value
Step 4: After the resource is used, run the echo command on the console to release resources:
echo N > /sys/class/gpio/unexport

Note: You can enable the sysfs debug function of GPIO by turning on the CONFIG_DEBUG_FS
option, and check the base number corresponding to GPIO PIN with the following command
before operation:

cat /sys/kernel/debug/gpio

7.3.2 GPIO Operation Program Example with Kernel Space

GPIO Read-Write Operation program example in kernel space:

Step 1: Register GPIO:

gpio_request(gpio_num, NULL);

gpio_num is the GPIO number to be operated on, which is equal to “GPIO Group
Number + Intra-Group Offset Number”

Step 2: Set GPIO direction:

for input: gpio_direction_input(gpio_num)
for output: gpio_direction_output(gpio_num, gpio_out_val)

30

HEMK CV180x CV181x Peripheral Dr&HAPHdR1Gn GiHI® OPERATION GUIDE

Step 3: View GPIO input values or set GPIO output value:

check the input value: gpio_get_value(gpio_num);
output low: gpio_set_value(gpio_num, 0);
output high: gpio_set_value(gpio_num, 1);

Step 4: Release registered GPIO number:

gpio_free(gpio_num);

GPIO interrupt operation program example with kernel mode:

Step 1: Register GPIO:

gpio_request(gpio_num, NULL);

gpio_num is the GPIO number to be operated on, which is equal to "GPIO Group,
—Number + Intra-Group Offset Number"

Step 2: Set GPIO Direction:

gpio_direction_input(gpio_num);

For GPIO pins to be interrupt sources, the direction must be configured as input
mode.

Step 3: The interrupt number corresponding to the GPIO number of the mapping operation:

irq_num = gpio_to_irq(gpio_num);

The interrupt number is the return value.

Step 4: Register interrupt:

request_irq(irq_num, gpio_dev_test_isr, irqflags, "gpio_dev_test", &
—gpio_irqg_type))

Irgflags is a type of interrupt that needs to be registered, and the common types are:
IRQF_SHARED : Sharing Interrupt;
IRQF_TRIGGER,__RISING : Rising edge triggering;
TRQF_TRIGGER_FALLING : Drop edge trigger;
IRQF_TRIGGER,__HIGH : High level trigger;
IRQF_TRIGGER,__LOW : Low level trigger
Step 5: Release registered interrupts and GPIO numbers at end:

free_irq(gpio_to_irq(gpio_num), &gpio_irq_type);
gpio_free(gpio_num);

31

HEMK CV180x CV181x Peripheral Dr&HAPHdR1Gn GiHI® OPERATION GUIDE

7.3.3 GPIO Operation Example with User Mode

GPIO Read-Write Operation program example with user space:

Step 1: Number the GPIO as expor for manipulation:

fp = fopen("/sys/class/gpio/export", "uw");
fprintf(fp, "/d", gpio_num);
fclose(fp);

gpio_num is the GPIO number to be operated on, which is equal to “GPIO Group
Number + Intra-Group Offset Number”

Step 2: Set GPIO direction:

fp = fopen("/sys/class/gpio/gpio%d/direction", "rb+");
for input: fprintf(fp, "in");
for output: fprintf(fp, "out");

fclose(fp);

Step 3: View GPIO input value or set GPIO output value:

fp = fopen("/sys/class/gpio/gpiojkd/direction", "rb+");
check input: fread(buf, sizeof(char), sizeof(buf) - 1, fp);
output low:

strcpy(buf, “0”);

fwrite(buf, sizeof(char), sizeof(buf) - 1, fp);

output high:

strcpy(buf, “17);

furite(buf, sizeof(char), sizeof(buf) - 1, fp);

Step 4: Number the GPIO manipulated as unexport:

fp = fopen("/sys/class/gpio/unexport", "w");
fprintf(fp, "/d", gpio_num);
fclose(fp);

32

SC

CN R RS CV180x CV181x Peripheral DA PpaiRtfim GAidd OPERATION GUIDE

8 UART operation guide

8.1 The Operation Preparation of UART Is as
Follows

e Use the kernel released by SDK,

8.2 Module Compilation

o The source path is drivers/uart. When users need to access UART devices, they first need
to specify the UART source path and header file path in the compilation script. After
successful compilation, a library file named libuart.a is generated in the out directory. The
library file needs to be specified with the -luart parameter when linking

8.3 Operation Example

Step 1:
Call the following interface in the initialization function to implement UART driver registration:
uart_dev_init();

If dma is enabled to receive data, dmac initialization is performed and called in the initialization
function:

cvi_dmac_init();
Step 2:
Open the specified UART by calling open from the /dev/ttySN node
Step 3:

After opening UART, ioctl configuration read can be called to read data, write can send data,
read can be blocked by select

Step 4:

33

SC

g8 R CV180x CV181x Peripheral DA PPERIRn GARE OPERATION GUIDE

When UART is not used, close is called to close, after which UART controller no longer receives
data from the serial port.

8.4 Action Sample UART API Reference

o uart dev init: UART Device Initialization
o wuart _suspend: UART Device Suspend
o wuart_resume: UART Device Wake Up

8.4.1 uart_ dev_init

[Description]
UART Device Initialization
[Syntax]

int uvart_dev_init(void);

Parameters | Description | Input / Output
None None None

8.4.2 uart_suspend

[Description]
UART Device Suspend
[Syntax]

int uart_suspend(void) ;

(241
Parameters | Description Input / Output
Data Reserved, passed in NULL | None

[Return Value]

Return Value Description

0 Success

Others Failure

34

SO

EREMNR CV180x CV181x Peripheral DA PpaiRtfim GAidd OPERATION GUIDE

8.4.3 uart_resume

[Description]
UART Initial wake-up of device,
[Syntax]

int uart_resume(void);

(241
Parameters | Description Input / Output
Data Not used, passing in NULL | None

[Return Valuel

Return Value Description

0 Success

Others Failure

8.5 ioctl Configuration Instructions

[Description]

After turning on UART, configure UART baud rate, dma reception, blocking reads,
wired control, etc. through ioctl.

For example, configure baud rate:
ret = ioctl(fd, CFG_BAUDRATE, 9600);

[Configuration Instructions]

35

HEMK CV180x CV181x Peripheral DGHAPPERttn GAlde OPERATION GUIDE

Command Number Command Parameters | Description
Code
UART CFG BAUDRATHx101 baud rate Configure baud rate, UARTO0 default
baud rate
115200; UART1, UART?2, UARTS are
9600
Supports a maximum baud rate of
921600
UART CFG_DMA RX| 0x102 Oor1 0: Configured as interrupt receiving
mode;
1: Configured DMA reception defaults
to interrupt
type
UART CFG_DMA TX| 0x103 Oor1l 0: Configured as interrupt receiving
mode;
1: Configured DMA reception defaults
to interrupt type
UART CFG_RD BLOCKx104 Oorl 0: Configure read as non-blocking
mode;
1: Configure event blocking read
The default is blocking mode;
UART_CFG_ATTR 0x105 Oorl Configure check bits, data bits, stop
bits, FIFO,
CTS/RTS, etc
The default is: no check bit, 8 bits of
data bit, 1 bit
Stop bit, no CTS/RTS.
Refer to the header file struct
uart attr
UART CFG_ PRIV 0x110 Custo Drive custom commands
mization

36

SC

R CV180x CV181x Peripkiid PFRR OpdtARGHIRNE OPERATION GUIDE

9 Watchdog Operation Guide

9.1 Preparations of Watchdog Are as Follow:

e Use the kernel released by SDK

9.2 Module Compile

e Insert module :cv180x: insmod cv180x_wdt.ko, cvl81x: insmod cv181x_wdt.ko.

o To operate the Watchdog, run the Watchdog read and write command in the console or
write the Watchdog read and write program in kernel space or user space.

9.2.1 Operation Example

Watchdog uses the standard linux framework to provide a hardware watchdog. Users can use
watchdog simply by turning it on, off, or setting timeout. The system restarts when the watchdog
timeout occurs.

The Watchdog is disabled by default. Customers can decide whether to enable it. The timeout
times that can be specified are 1s, 2s, bs, 10s, 21s, 42s, and 85s.

When the user input timtout time is 8s, the driver will select a timeout greater than or equal to
the value of 10s; If timeout is not set, the driver uses 42s by default.

e Turn on WATCHDOG

Open the /dev/watchdog device node to start watchdog. You should ping (feed the dog) imme-
diately after opening, otherwise wdt will restart immediately.

int wdt_£fd = -1;

wdt_fd = open("/dev/watchdog", O_WRONLY);

if (wdt_fd == -1)

{
// fail to open watchdog device

b

ioctl(fd, WDIOC_KEEPALIVE, 0);

e Turn off WATCHDOG

37

SOP

W BB CV180x CV181x Periplihid PFRR ©paADEHIGE OPERATION GUIDE

The driver supports “Magic Close” . The magic character ‘V’ must be written to the watchdog
device before closing the watchdog.

If the userspace daemon shuts down the device without sending ‘V’ | the watchdog will keep
counting.If the dog is not fed for a given period of time, it will result in a timeout and the system
will restart.

The reference code is as follows:

int option = WDIOS_DISABLECARD;

ioctl(wdt_fd, WDIOC_SETOPTIONS, &option);

if (wdt_fd !'= -1)

{
write(wdt_fd, "v", 1);
close(wdt_£d);
wdt_fd = -1;

e Set the TIMEOUT value

Set timeout with unit seconds by using the standard IOCTL command WDIOC_ SETTIMEOUT.
The timeout times that can be specified are 1s, 2s, bs, 10s, 21s, 42s, and 85s.

#define WATCHDOG_IOCTL_BASE 'W'
#define WDIOC_SETTIMEOUT _IOWR (WATCHDOG_IOCTL_BASE, 6, int)

int timeout = 10;
ioctl(wdt_fd, WDIOC_SETTIMEOQUT, &timeout);

e PING watchdog
Ping watchdog through the standard IOCTL command, WDIOC _KEEPALIVE.

while (1) {
ioctl(fd, WDIOC_KEEPALIVE, 0);
sleep(1);

38

SC

BN B CV180x CV181x Peripheral Deidek Kpfethtion GMidd OPERATION GUIDE

]. O PWM Operation Guide

10.1 The Preparations for PWM Operation Are

as Follow

Use the kernel released by SDK

10.2 Operation Process

Insert module :cv180x: Insmod cv180x_pwm.ko, cv181x: insmod cv181x_ pwm.ko.

Run PMW read/write command under console or write PWM read /write program in kernel
space or user space to carry out input/output operation on PWM.

PWM operation has 16 channels at 100MHz constant frequency clock, each channel can be
controlled independently.

Cv180X/CV181X has 4 PWM IP (pwmprocessor()/ pwmprocessor4/ pwmprocessor8,/ pwm-
processorl2), each IP controls 4 channels, can control 16 signals in total. The circuit dia-
gram is represented by pwm0 to pwm15

In Linux sysfs, the pwm0 to pwm3 device nodes are as follows:
/sys/class/pwm/pwmprocessor0)/pwm0~3

In Linux sysfs, the pwm4 to pwm7 device nodes are listed as follows:
/sys/class/pwm /pwmprocessord /pwm0~3

And so on

39

i # R CV180x CV181x Peripheral Deidex Rlstution GB¥dd OPERATION GUIDE

10.3 Operation Example

10.3.1 PWM Operation Commands Example

Step 1:

Use the echo command in the console to configure the PWM number to be operated,
for example, PWM1:

echo 1 > /sys/class/pwm/pumprocessor0/export
Step 2:

Set the duration of a PWM cycle (unit: ns):

echo 1000000 >/sys/class/pwm/pwmprocessorO/pwml/period
Step 3:

Set the “ON” time of a cycle(unit: ns), mnamely the duty cycle=
duty__cycle/period=50% :

echo 500000 >/sys/class/pwm/pwmprocessor0/pwml/duty_cycle
Step 4:
Enable the PWM :

echo 1 >/sys/class/pwm/pwmprocessor0O/pwml/enable

10.3.2 An Example of a Program to Operate Through File
10

10 read-write operation program example with user space:
Step 1:
Configure the number of the PWM to be operated, for example, PWM1:

fd = open("/sys/class/pwm/pwmprocessor0/export", O_WRONLY);

if (£d < 0)

{
dbmsg ("open export error\n");
return -1;

}

ret = write(fd, "1", strlen("0"));

if(ret < 0)

{
dbmsg ("Export pwml error\n");
return -1;

Step 2:

40

SOPI-

Bl CV180x CV181x Peripheral Deidek RipfeRution GWMd OPERATION GUIDE

Set the duration of a PWM cycle (unit: ns):

fd_period = open("/sys/class/pwm/pwmprocessor0/pwml/period", O_RDWR);
ret = write(fd_period, "1000000” ,strlen("1000000”));
if(ret < 0)
{
dbmsg("Set period error\n");
return -1;

Step 3:

Set the “ON” time of a cycle. (unit: ns) Duty cycle=50% for this example.

fd_duty = open("/sys/class/pwm/pwmprocessorO/pwml/duty_cycle", 0_

—RDWR) ;

ret = write(fd_duty, "500000", strlen("500000"));

if (ret < 0)

{
dbmsg("Set period error\n");
return -1;

Step 4:
Enable PWM:

fd_enable = open("/sys/class/pwm/pwmprocessor(0/pwml/enable", O_RDWR);

ret = write(fd_enable, "1", strlen("1"));

if(ret < 0)

{
dbmsg("enable pwmO error\n");
return -1;

41

SC

CV180x CV181x Peripheral DidAOpdRibh GAlde OPERATION GUIDE

].]. ADC Operation Guide

11.1 The Preparations of ADC Operation Are as
Follow

e Use the kernel released by SDK.

11.2 Operation Process

Insert module: cv180x, insmod cv180x_ saradc.ko, cv181x, insmod cv181x_ saradc.ko.

Run ADC read/write command under the console or write ADC read/write program in
kernel space or user space to carry out input/output operation on ADC.

The user layer accesses the 11O interface to implement trigger and sampling operations of
three-channel and 12-bit ADC.

1.5v ref reference voltage.

11.3 Operation Example

11.3.1 ADC Operation Commands Example:

Step 1:
Specify ADC channels 1 to 6, in this example, ADC1:

(ADC channel 4 is dedicated to measuring VDDC_RTC; ADC channel 5 is
PWR__GPIO1; ADC channel 6 is PWR_VBAT

echo 1 > /sys/class/cvi-saradc/cvi-saradcO/device/cv_saradc
Step 2:
Read selected ADC channe

cat /sys/class/cvi-saradc/cvi-saradcO/device/cv_saradc

42

R & CV180x CV181x Peripheral DiBdABBdR:ibh Ghlde OPERATION GUIDE

11.3.2 ADC Read-Write Operation Program Example with

User Space

Step 1:

Configure the ADC channel number to be operated:

fd = open(/sys/class/cvi-saradc/cvi-saradcO/device/cv_saradc” , 0_
—RDWR|O_NOCTTY|O_NDELAY)) ;
If (fd < 0)

printf ("open adc err!\n");
write(£fd, “1” , 1);

Step 2:
Read the ADC values:

char buffer[512];
int len = O;
int adc_value = O0;

len = read(fd, buffer, 10);
if (len '= 0) {

adc_value= atoi(buffer);

printf("adc value is /d\n", adc_alue);
}
close(fd);

43

	Disclaimer
	Ethernet Operation Guide
	Operation Example
	IPv6 Description
	IEEE 802.3x Flow Control Function
	Flow Control Function Description
	Flow Control Function Configuration
	Ethtool Configuration Interface Flow Control Function

	USB Operation Guide
	Operational Readiness
	Uboot Operation Process
	The USB Host Operation Process Base on the Uboot
	The USB Drive Operation Process Based on the Uboot

	Linux Host
	USB 2.0 Host Operation Process
	USB Pen Drive Operation Process

	Linux Device
	USB 2.0 Device Operation Process
	Examples of storage device operations in USB device
	Example of Terminal Device Operation in USB device
	Example of RNDIS Device Operation in USB Device
	Operation Example of CVITEK USB GADGET in USB device

	Points to Pay Attention to in Operation

	SD/MMC card operation guide
	Operation preparation
	Operation Flow
	Operation example
	Points to Pay Attention to in Operation

	I2C Operation Guide
	Operation Preparation
	Operation Process
	Interface Rate Setting Instructions
	Examples of I2C Read and Write Commands:
	I2C Read-Write Program Example with Kernel Mode:
	I2C Read-Write Program Example with User Mode:

	SPI Operation Guide
	Operation Preparation
	Operation Process
	Operation Example
	SPI Read-Write Program Example with Kernel Mode：
	SPI Read-Write Program Example In User Space

	GPIO Operation Guide
	GPIO Preparation
	Operation Process
	Operation Example
	GPIO Operation Command Example
	GPIO Operation Program Example with Kernel Space
	GPIO Operation Example with User Mode

	UART operation guide
	The Operation Preparation of UART Is as Follows
	Module Compilation
	Operation Example
	Action Sample UART API Reference
	uart_dev_init
	uart_suspend
	uart_resume

	ioctl Configuration Instructions

	Watchdog Operation Guide
	Preparations of Watchdog Are as Follow:
	Module Compile
	Operation Example

	PWM Operation Guide
	The Preparations for PWM Operation Are as Follow
	Operation Process
	Operation Example
	PWM Operation Commands Example
	An Example of a Program to Operate Through File IO

	ADC Operation Guide
	The Preparations of ADC Operation Are as Follow
	Operation Process
	Operation Example
	ADC Operation Commands Example:
	ADC Read-Write Operation Program Example with User Space

