
CV180x CV181x Peripheral Driver
Operation Guide

Version: 1.0.1

Release date: 2023-02-06

Copyright © 2020 CVITEK Co., Ltd. All rights reserved.
No part of this document may be reproduced or transmiited in any form or by any means
without prior written consent of CVITEK Co., Ltd.

CV180x CV181x Peripheral Driver Operation Guide CONTENTS

Contents

1 Disclaimer 2

2 Ethernet Operation Guide 3
2.1 Operation Example . 3
2.2 IPv6 Description . 4
2.3 IEEE 802.3x Flow Control Function . 4

2.3.1 Flow Control Function Description . 4
2.3.2 Flow Control Function Configuration . 5
2.3.3 Ethtool Configuration Interface Flow Control Function 5

3 USB Operation Guide 6
3.1 Operational Readiness . 6
3.2 Uboot Operation Process . 6

3.2.1 The USB Host Operation Process Base on the Uboot 6
3.2.2 The USB Drive Operation Process Based on the Uboot 7

3.3 Linux Host . 8
3.3.1 USB 2.0 Host Operation Process . 8
3.3.2 USB Pen Drive Operation Process . 9

3.4 Linux Device . 10
3.4.1 USB 2.0 Device Operation Process . 10
3.4.2 Examples of storage device operations in USB device 10
3.4.3 Example of Terminal Device Operation in USB device 11
3.4.4 Example of RNDIS Device Operation in USB Device 12
3.4.5 Operation Example of CVITEK USB GADGET in USB device 14

3.5 Points to Pay Attention to in Operation . 15

4 SD/MMC card operation guide 16
4.1 Operation preparation . 16
4.2 Operation Flow . 16
4.3 Operation example . 17
4.4 Points to Pay Attention to in Operation . 17

5 I2C Operation Guide 19
5.1 Operation Preparation . 19
5.2 Operation Process . 19
5.3 Interface Rate Setting Instructions . 19

5.3.1 Examples of I2C Read and Write Commands: 20
5.3.2 I2C Read-Write Program Example with Kernel Mode: 20
5.3.3 I2C Read-Write Program Example with User Mode: 21

6 SPI Operation Guide 23
6.1 Operation Preparation . 23

i

CV180x CV181x Peripheral Driver Operation Guide CONTENTS

6.2 Operation Process . 23
6.3 Operation Example . 23

6.3.1 SPI Read-Write Program Example with Kernel Mode： 23
6.3.2 SPI Read-Write Program Example In User Space 26

7 GPIO Operation Guide 29
7.1 GPIO Preparation . 29
7.2 Operation Process . 29
7.3 Operation Example . 29

7.3.1 GPIO Operation Command Example . 29
7.3.2 GPIO Operation Program Example with Kernel Space 30
7.3.3 GPIO Operation Example with User Mode 32

8 UART operation guide 33
8.1 The Operation Preparation of UART Is as Follows 33
8.2 Module Compilation . 33
8.3 Operation Example . 33
8.4 Action Sample UART API Reference . 34

8.4.1 uart_dev_init . 34
8.4.2 uart_suspend . 34
8.4.3 uart_resume . 35

8.5 ioctl Configuration Instructions . 35

9 Watchdog Operation Guide 37
9.1 Preparations of Watchdog Are as Follow: . 37
9.2 Module Compile . 37

9.2.1 Operation Example . 37

10 PWM Operation Guide 39
10.1 The Preparations for PWM Operation Are as Follow 39
10.2 Operation Process . 39
10.3 Operation Example . 40

10.3.1 PWM Operation Commands Example . 40
10.3.2 An Example of a Program to Operate Through File IO 40

11 ADC Operation Guide 42
11.1 The Preparations of ADC Operation Are as Follow 42
11.2 Operation Process . 42
11.3 Operation Example . 42

11.3.1 ADC Operation Commands Example: . 42
11.3.2 ADC Read-Write Operation Program Example with User Space 43

ii

CV180x CV181x Peripheral Driver Operation Guide CONTENTS

Revision History

Revision Date Description
1.0.0 2022/10/31 Initial version
1.0.1 2023/02/06 Modified to be compatible with cv180x and cv181x
1.0.2 2023/02/23 Modified gpio number

1

CV180x CV181x Peripheral Driver Operation GuideCHAPTER 1. DISCLAIMER

1 Disclaimer

Terms and Conditions
The document and all information contained herein remain the CVITEK Co., Ltd’s (
“CVITEK”) confidential information, and should not disclose to any third party or use it in

any way without CVITEK’s prior written consent. User shall be liable for any damage and
loss caused by unauthority use and disclosure.
CVITEK reserves the right to make changes to information contained in this document at any
time and without notice.
All information contained herein is provided in “AS IS”basis, without warranties of any kind,
expressed or implied, including without limitation mercantability, non-infringement and fitness
for a particular purpose. In no event shall CVITEK be liable for any third party’s software
provided herein, User shall only seek remedy against such third party. CVITEK especially
claims that CVITEK shall have no liable for CVITEK’s work result based on Customer’s
specification or published shandard.

Contact Us

Address Building 1, Yard 9, FengHao East Road, Haidian District, Beijing, 100094,
China

Building T10, UpperCoast Park, Huizhanwan, Zhancheng Community, Fuhai
Street, Baoan District, Shenzhen, 518100, China

Phone +86-10-57590723 +86-10-57590724

Website https://www.sophgo.com/

Forum https://developer.sophgo.com/forum/index.html

2

https://www.sophgo.com/
https://developer.sophgo.com/forum/index.html

CV180x CV181x Peripheral Driver Operation GuideCHAPTER 2. ETHERNET OPERATION GUIDE

2 Ethernet Operation Guide

2.1 Operation Example
The Ethernet module is built-in in the kernel by default, and there is no need to perform additional
insmod operation.

The operation steps of using ethernet port under kernel are as follows :

• Configure ip address and netmask

ifconfig eth0 xxx.xxx.xxx.xxx netmask xxx.xxx.xxx.xxx up

• Set default gateway

route add default gw xxx.xxx.xxx.xxx

• Mount nfs

mount -t nfs -o nolock xxx.xxx.xxx.xxx:/your/path /mount-dir

• Using tftp to upload and download files in shell

Be sure that there is tftp service software running on the server side

− download document: tftp –g -r [remote file name] [server ip]

Note: remote file name is the name of the file to be downloaded, and server IP is
the IP address of the server where the file download from (ex: tftp -g -r test.txt
192.168.0.11)

− upload document: tftp –p -l [local file name] [server ip]

Note: local file name is the name of the file to be uploaded locally, and server
IP is the IP address of the target server where to upload (ex: tftp -l -p test.txt
192.168.0.11)

Note: cv180x/cv181x Ethernet module don’t support TSO function.

Note: The nfs tool will not be built into the file system by default. The user needs to add
the tool by themselves when necessary.

3

CV180x CV181x Peripheral Driver Operation GuideCHAPTER 2. ETHERNET OPERATION GUIDE

2.2 IPv6 Description
The IPv6 functionality is disabled by default in the SDK package. To enable IPv6, kernel options
need to be modified. The specific steps are as follows:

1. Cv180x series

Modify

build/boards/cv180x/{board_name}/linux/cvitek_{board_name}_defconfig

Ex: build/boards/cv180x/cv1801c_wevb_0009a_spinor/linux/

cvitek_cv1801c_wevb_0009a_spinor_defconfig add or modify to CON-
FIG_IPV6=y. Then recompile the kernel software.

2. Cv181x series

Modify

build/boards/cv181x/{board_name}/linux/cvitek_{board_name}_defconfig

Ex: build/boards/cv181x/ cv1811c_wevb_0006a_spinor/linux/

cvitek_cv1811c_wevb_0006a_spinor_defconfig add or modify to CON-
FIG_IPV6=y. Then recompile the kernel software.

The method for configuring an IPv6 environment is as follows:

• To configure an IPv6 address and gateway, use the following command:

#ip -6 addr add <IPv6 address>/IPv6 prefixlen dev <port name>

Ex: ip -6 addr add 2020:abc:102::8888/24 dev eth0

• IPv6 address specified by Ping

#ping -6 <ipv6 address>

Ex: ping -6 2020:abc:102::6666

2.3 IEEE 802.3x Flow Control Function

2.3.1 Flow Control Function Description
CV180x/CV181x Ethernet supports the flow control function defined by IEEE 802.3x. It achieves
the purpose of flow control by sending flow control frames and receiving the flow control frames
sent by the opposite end.

• Send flow control frame:

In the process of receiving the packets sent by the opposite site, if it is found that the current
receiving queue of the receiving site may not be able to receive the subsequent packets, the
local site will send the flow control frame to the opposite site, requiring the opposite site to
suspend sending packets for a period of time, so as to control the flow.

4

CV180x CV181x Peripheral Driver Operation GuideCHAPTER 2. ETHERNET OPERATION GUIDE

• Receive flow control frame:

When the local site receives the flow control frame sent by the opposite site, the local site
will delay sending packets to the opposite site according to the flow control time description
within the frame, and then start sending after the flow control delay time. If the flow control
frame sent by the opposite site is received in the waiting process and the flow control time
described is 0, the transmission will be started directly.

2.3.2 Flow Control Function Configuration
The function of receiving flow control frame is off by default, and no software interface configu-
ration is provided.

Send flow control frame function related configuration file in
linux/drivers/net/ethernet/stmicro/stmmac/stmmac_main.c

static int flow_ctrl = FLOW_OFF;
module_param(flow_ctrl, int, 0644);
MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");

static int pause = PAUSE_TIME;
module_param(pause, int, 0644);
MODULE_PARM_DESC(pause, "Flow Control Pause Time");

To enable the flow control function by default, you can modify the flow_ctrl = FLOW_AUTO.

If you want to modify the default pause time, you can configure “pause”to the target time.

2.3.3 Ethtool Configuration Interface Flow Control Function
Users can enable the flow control function through the standard ethtool tool interface.

ethtool – a eth0 command to view the flow control function status of eth0 port; the print is as
follows

ethtool -a eth0
Pause parameters for eth0:
Autonegotiate: on
RX: off
TX: off

Among them, RX flow control is off, TX flow control is off; the user can open or close TX flow
control through the following command:

ethtool -A eth0 tx off（turn off TX flow control）
ethtool -A eth0 tx on（turn on TX flow control）

Note: The ethtool will not be built into the file system by default. The user needs to add the
tool by themselves when necessary.

5

CV180x CV181x Peripheral Driver Operation GuideCHAPTER 3. USB OPERATION GUIDE

3 USB Operation Guide

3.1 Operational Readiness
USB 2.0 Host/Device is prepared as follows:

• Use the U-boot and Kernel released by SDK.

• The file system can use the local file system ext4 or squashfs, or NFS.

• Shell script“run_usb.sh”.run_usb.sh uses the USB ConfigFS function of the kernel to
customize the USB device. Users can refer to and modify run_usb.sh to change the param-
eters related to PID / VID and function. For detailed operation, refer to the kernel file ”
linux/Documentation/usb/gadget_configfs.txt”.

3.2 Uboot Operation Process

3.2.1 The USB Host Operation Process Base on the Uboot
Only pen drive and hard disk storage devices are supported in Uboot. USB host is off by default
in uboot. You must enable relevant config.

Step1. enable USB related driver under uboot:

CONFIG_USB=y
CONFIG_DM_USB=y
CONFIG_USB_STORAGE=y
CONFIG_CMD_USB=y

Step2.

2.1) Cv180x series modify include/configs/cv180x-asic.h.

2.2) Cv181x series modify include/configs/cv181x-asic.h, newly add the definition:

#define CONFIG_USB_DWC2
#define CONFIG_USB_DWC2_REG_ADDR 0x04340000

Step3. Compile the drivers. Compile uboot to generate fip.bin

6

CV180x CV181x Peripheral Driver Operation GuideCHAPTER 3. USB OPERATION GUIDE

build_uboot

3.2.2 The USB Drive Operation Process Based on the Uboot
The preparation before starting the Uboot USB Host:

USB Host base on the Uboot does not support hot plug. You must plug in the device before
starting the USB host. If a USB Hub is installed on the platform, ensure that the Hub’s power
source is enabled and the Switch in the USB path is switched to the Host connector.

Take cv180x as an example (the corresponding method is also applicable to cv181x) :

Power the platform, access the uboot Command Line Interface, and run the usb start command
to check whether the identification is successful.

phobos_c906# usb start
starting USB...
USB0: Core Release: 4.00a
scanning bus 0 for devices... Device NOT ready

Request Sense returned 02 3A 00
2 USB Device(s) found

scanning usb for storage devices... 2 Storage Device(s) found

If an enumeration error occurs after “usb start”or the device cannot be detected, run the
“setenv usb_pgood_delay XXX”command on the uboot command- line interface (CLI), you can

adjust the timeout value for a device that is preheated slowly or connected to the Hub. The
recommended value ranges from 1000 to 3000.

After completing the recognition, run the“usb tree”command to view the recognition rate. The
following is an example of connecting a USB host to a Hub and a storage device:

phobos_c906# usb tree
USB device tree:
1 Hub (480 Mb/s, 0mA)
| U-Boot Root Hub
|
+-2 Mass Storage (480 Mb/s, 500mA)

Generic USB3.0 Card Reader 000000001532

Initialization and application:

After completing the recognition you can enter the follow operations:

Step1: check the device information

• CLI execute: usb info [dev], You can view information about all devices on the
controller. The following is an example.

phobos_c906# usb info 1
config for device 1
2: Mass Storage, USB Revision 2.10

(continues on next page)

7

CV180x CV181x Peripheral Driver Operation GuideCHAPTER 3. USB OPERATION GUIDE

(continued from previous page)

- Generic USB3.0 Card Reader 000000001532
- Class: (from Interface) Mass Storage
- PacketSize: 64 Configurations: 1
- Vendor: 0x05e3 Product 0x0749 Version 21.50

Configuration: 1
- Interfaces: 1 Bus Powered 500mA
Interface: 0
- Alternate Setting 0, Endpoints: 2
- Class Mass Storage, Transp. SCSI, Bulk only
- Endpoint 1 In Bulk MaxPacket 512
- Endpoint 2 Out Bulk MaxPacket 512

Step2: Read the pen drive

• Run: usb read addr blk# cnt, in command line to read the data with the starting
address of blk and the size of cnt to the DDR address of addr, as shown in the
following example:

phobos_c906# usb read 0x90000000 0 10

USB read: device 0 block # 0, count 16 ... 16 blocks read: OK

Step3: Write the pen drive

• Run: usb write addr blk# cnt, in command line to write the data with DDR
address addr and size cnt to the location with the starting address blk of the
storage device. The example is as follows:

phobos_c906# usb write 0x90000000 2000 2000
USB read: device 0 block # 8192, count 8192 ... 8192 blocks write: OK

3.3 Linux Host

3.3.1 USB 2.0 Host Operation Process
Step2: start the platform and load ext3 or squashfs. (or use the NFS)

Step3: load the relevant drivers

insmod usb-common.ko

insmod usbcore.ko

insmod udc-core.ko

insmod roles.ko

insmod dwc2.ko

step4: set USB role

echo host > /proc/cviusb/otg_role

8

CV180x CV181x Peripheral Driver Operation GuideCHAPTER 3. USB OPERATION GUIDE

3.3.2 USB Pen Drive Operation Process
Insert detection:

Insert the USB drive directly and observe whether the enumeration is successful. Normally, the
UART is printed as:

[72.061964] usb 1-1: new high-speed USB device number 2 using dwc2
[72.315816] usb-storage 1-1:1.0: USB Mass Storage device detected
[72.335934] scsi host0: usb-storage 1-1:1.0
[73.363027] scsi 0:0:0:0: Direct-Access Generic STORAGE DEVICE 1532␣
↪→PQ: 0 ANSI: 6
[73.374407] sd 0:0:0:0: Attached scsi generic sg0 type 0
[73.558597] sd 0:0:0:0: [sda] 30253056 512-byte logical blocks: (15.5 GB/14.
↪→4 GiB)
[73.566961] sd 0:0:0:0: [sda] Write Protect is off
[73.571922] sd 0:0:0:0: [sda] Mode Sense: 21 00 00 00
[73.577899] sd 0:0:0:0: [sda] Write cache: disabled, read cache: enabled,␣
↪→doesn't support DPO or FUA
[73.593961] sda: sda1
[73.602607] sd 0:0:0:0: [sda] Attached SCSI removable disk

sda1 represents the first partition on the USB drive or portable hard drive. When there are
multiple partitions, the words sda1, sd2, sda3, etc. will appear

Initialization and application：

After inserting the storage device, perform the following operations:

In sdXY, X is the disk number and Y is the partition number. Please modify it
according to the specific system environment。

• The device node for partition command operation is sdX, example: $fdisk
/dev/sda.

• The specific partition formatted with mkdosfs tool is sdXY: ~$ mkdosfs -F 32
/dev/sda1。

• The specific partition of mount is sdXY: ~$ mount /dev/sda1 /mnt

1. View partition information

• Run the command “ls /dev”to view the system device files, and if there
is no partition information sdXY, there is no partition. Please partition the
storage device with fdisk and go to step 2.

• If there is partition information sdXY, the pen drive partition has been
detected and entered step 2.。

2. View formatted information

• If it is not formatted, use mkdosfs to format and then go to step 3.

• If formatted, go to step 3

3. Mount the directory

• Run the “mount /dev/sdaXY /mnt”mount directory.。

9

CV180x CV181x Peripheral Driver Operation GuideCHAPTER 3. USB OPERATION GUIDE

4. Read and write the storage device.

3.4 Linux Device

3.4.1 USB 2.0 Device Operation Process
Step1. Compile the kernel driver module of USB2.0 Device

• Enter the following path of menuconfig and configure it as follows.

Device Driver --->
[*] USB support --->

<*> USB Gadget Support --->
<M> USB functions configurable through configfs
[*] Abstract Control Model (CDC ACM)
[*] Mass storage

• Compile kernel module and generate .ko file

Step 2: Start the platform, load ext4 or squashfs file system, or use NFS

Step 3: When the platform is used as a device, the USB2.0 device module must be loaded to be
recognized as a USB device on the Host side. Please refer to “operation example”for specific
operation.

All USB 2.0 device drivers are listed below.

3.4.2 Examples of storage device operations in USB device
Step4: As a Device, the platform supports both eMMC and SD storage media as follows:

Step5: Load below kernel modules.

insmod configfs.ko

insmod usb-common.ko

insmod udc-core.ko

insmod libcomposite.ko

insmod usbcore.ko

insmod roles.ko

insmod dwc2.ko

step6: The paths of USB Device related modules under kernels are:

drivers/usb/gadget/libcomposite.ko

drivers/usb/gadget/function/usb_f_mass_storage.ko

fs/configfs/configfs.ko

10

CV180x CV181x Peripheral Driver Operation GuideCHAPTER 3. USB OPERATION GUIDE

step7: switch otg controller to device mode

echo device > /proc/cviusb/otg_role

step8: run shell script “usb_usb.sh”

run_usb.sh probe msc /dev/mmcblkXY

run_usb.sh start

mmcblkXY is the Yth partition in eMMC or SD of the Xth disk. Please select it
according to your specific situation.

Step9: The path of the USB Device related module under rootfs is: /etc/run_usb.sh

Step10: By connecting the platform to the Host side through USB, the platform can be recognized
as a USB storage device on the Host side, and the corresponding device nodes can be generated
in the / dev directory.

Step11: On the Host side, the platform can be treated as a common USB storage device, parti-
tioning, formatting, reading and writing.

3.4.3 Example of Terminal Device Operation in USB device
The platform acts as a device as a terminal device by doing the following:

Setp1: insmod below kernel modules.

insmod configfs.ko

insmod libcomposite.ko

insmod u_serial.ko

insmod usb_f_acm.ko

insmod usb_f_serial.ko

The paths of USB Device related modules under kernels are:

• drivers/usb/gadget/libcomposite.ko

• drivers/usb/gadget/function/usb_f_serial.ko

• drivers/usb/gadget/function/usb_f_acm.ko

• drivers/usb/gadget/function/u_serial.ko

• fs/configfs/configfs.ko

Switch otg controller to device mode

echo device > /proc/cviusb/otg_role

run script“run_usb.sh”run_usb.sh probe acm run_usb.sh start

The path of the USB Device related module under rootfs is:

/etc/run_usb.sh

11

CV180x CV181x Peripheral Driver Operation GuideCHAPTER 3. USB OPERATION GUIDE

Step2: By connecting the platform to the Host through USB, the platform can be recognized as
a USB terminal device in the Host side, and the corresponding device node ttyACMX, X, is the
same type of terminal device number, is generated in the /dev directory. ttyGSY is generated in
the device side /dev directory, Y is the same type of terminal device number.

Host and Device can transmit data through the terminal device.

3.4.4 Example of RNDIS Device Operation in USB Device
The platform acts as an RNDIS device as follows

<<<<<<< HEAD Step3. Load below kernel modules. ======= Step1. ins-
mod below kernel modules. >>>>>>> 8360b7f⋯[fix](peripheral): Fix errors of Periph-
eral_Driver_Operation_Guide

insmod configfs.ko

insmod libcomposite.ko

insmod u_ether.ko

insmod usb_f_ecm.ko

insmod usb_f_eem.ko

insmod usb_f_rndis.ko

The paths of USB Device related modules under kernels are:

• drivers/usb/gadget/libcomposite.ko

• drivers/usb/gadget/function/usb_f_ecm.ko

• drivers/usb/gadget/function/usb_f_ecm.ko

• drivers/usb/gadget/function/usb_f_rndis.ko

• drivers/usb/gadget/function/u_ether.ko

• fs/configfs/configfs.ko

Switch otg controller to device mode

echo device > /proc/cviusb/otg_role

run script “run_usb.sh”run_usb.sh probe rndis run_usb.sh start

The path of the USB Device related module under rootfs is:

/etc/run_usb.sh

Step2: By connecting the platform to USB Host size via USB, you can recognize the platform as
a USB Remote NDIS device on the Host side and install the Remote NDIS Compatible Device
driver on Windows.

12

CV180x CV181x Peripheral Driver Operation GuideCHAPTER 3. USB OPERATION GUIDE

Step3: Set IP Address on Single Board, for example”ifconfig usb0 192.168.3.101 up”

Step4: Set the IP address on Windows.

13

CV180x CV181x Peripheral Driver Operation GuideCHAPTER 3. USB OPERATION GUIDE

Host and Device can transmit data through RNDIS devices.

3.4.5 Operation Example of CVITEK USB GADGET in
USB device

The platform works as a Device using a custom CVTEK USB Gadget (CVG) as follows:

Step1: Insert below kernel modules

insmod configfs.ko

insmod libcomposite.ko

insmod usb_f_cvg.ko

The paths of USB Device related modules under kernels are:

• drivers/usb/gadget/libcomposite.ko

• drivers/usb/gadget/function/usb_f_cvg.ko

• fs/configfs/configfs.ko

Switch otg controller to device mode

echo device > /proc/cviusb/otg_role

run script “run_usb.sh”

run_usb.sh probe cvg

run_usb.sh start

The path of the USB Device related module under rootfs is:

14

CV180x CV181x Peripheral Driver Operation GuideCHAPTER 3. USB OPERATION GUIDE

/etc/run_usb.sh

Step2: Connect the platform to the Host side via USB and use Zadig to install libusb (WinUSB)
as the driver of the device.

Step3: Run test program sample_cvg [#TEST] on a single board.

Step4: Execute cvg/pctool/gen_patterns.sh on PC generates test Patterns. Execute ”
cvg/pctool/cvg_test.py”to start testing.

Step5: Refer to the CVITEK USB Gadget Usage Guide.docx for detailed usage files.

3.5 Points to Pay Attention to in Operation
• The following points should be noted in the operation: The system is preset to be Host

mode after boot-up. To use Device mode, modules must be insmoded and USB ConfigFS
scripts executed. Before switching to device mode, users must confirm the following:

– The USB Cable is not connected to the Host.

– The hardware on the platform has to switch to the corresponding USB mode. For
example, before switching to Device mode, turn off the USB 5V power supply on the
platform. If there is a Hub on the platform, turn off the Hub power and switch the
path to Device mode connector

• After switching to Device mode, to use Host mode again, users must restart the platform

• When the platform is used as a terminal device, due to the TTY terminal characteristics, if
a large amount of data is transmitted in a short time, it may cause data loss. Users should
be aware of this limitation when using this feature.

• When reading a pen drive using USB Host under Uboot, be aware that if there is a Hub on
the platform, you must turn on the Hub power and switch the path to the correct Connector.

15

CV180x CV181x Peripheral Driver Operation GuideCHAPTER 4. SD/MMC CARD OPERATION GUIDE

4 SD/MMC card operation guide

4.1 Operation preparation
• Use U-boot and kernel in SDK

• File system:

For SD/MMC cards, the SDK supports only the FAT file system, which can be read and
written. After the kernel is started, mount it to the /mnt/sd directory or a directory as
required.

• Partitioning can be done through the fdisk tool.

• Cv180x/cv181x SD supports 2.0 and 3.0:

At present, the cv180x/cv181x SD/MMC card supports only 3.3V VDDIO. Please Note that!

4.2 Operation Flow
1) By default, all SD/MMC driver modules have been compiled into the kernel. There is no

need to run any additional loading commands.

2) Insert the card and power it on. You can view the card content by running fat commands
in the U-boot.

3) When boot platform reaching the kernel, response nodes /dev/mmcblk0 and
/dev/mmcblk0p1 are automatically scanned and identified.

4) In Uboot SD does not support hot plugging, but the kernel supports hot plugging. You can
insert an SD card into the kernel to perform operations on the SD card. For details, see 3.3
Operation Examples.

16

CV180x CV181x Peripheral Driver Operation GuideCHAPTER 4. SD/MMC CARD OPERATION GUIDE

4.3 Operation example
Examples of read and write operations for SD cards are as follows.

Initialization and application:

After the SD card is inserted, do the following (X below is the partition number whose value is
determined by the fdisk tool when partitioning):

The specific directory for the specified fdisk operation is: ~ $ fdisk/dev/mmcblk0

Step 1. Check partition information

a. If p1 is not displayed, the SD card is not partitioned yet. Please partition with fdisk tool
on Linux or format the SD card on Windows system before proceeding to Step 2.

b. If the partition information P1 is displayed, the SD card has been detected and partitioned
and can be mounted in step 2.

Step 2. Mount

1. ~ $ mount /dev/mmcblk1pX /mnt/sd ，This command mounts the Xth partition on the
SD card to the /mnt/sd directory

4.4 Points to Pay Attention to in Operation
1. Make sure that the SD card has good connection with the slot hardware pin. If the con-

nection is not good, there may be detection errors or error information related to read and
write data errors, which may lead to read and write failures.

2. Each time an SD card is inserted, a mount operation is required to read and write the
SD card. If the SD card is already mounted to the file system, you must do an umount
operation before unplugging, otherwise you may not see the SD card partition after the
next insertion of the SD card. In addition, unloading actions are also required for abnormal
card unplugging.

3. You must ensure that the SD card has created a partition and formatted it as FAT or
FAT32 file system (using the fdisk command under LINUX or the disk management tool
under Windows).

4. Operation not allowed during normal operation:

• Do not unplug the SD card when reading or writing it, otherwise some error message
will be printed, and the file system in the card may be damaged.

• If the current directory is under a mounted directory such as /mnt/sd, the unmount
operation cannot be performed. You must leave the current directory such as /mnt/sd
to perform the umount operation.

• When there are reading or writing operation on mounted directories in the system,
it cannot be umount until those operations have been completely ended. The task
of operating mounted directories must be completely completed before umount can
proceed properly.

• When an exception occurs during the operation:

17

CV180x CV181x Peripheral Driver Operation GuideCHAPTER 4. SD/MMC CARD OPERATION GUIDE

1. If the file system is damaged due to reading and writing data or other unknown
reasons, there may be file system error messages when reading and writing SD
cards. Umount, unplug, insert and mount the card again to read and write SD
cards normally again.

2. Because the initialization of SD card takes some time for the detection/remove
process, it is possible that no SD card can be detected if the card is inserted
quickly after the card is unplugged.

3. If the card is unplugged abnormally during the test, the user needs to press ctrl+c
to exit back to the kernel shell, otherwise the error message will be printed con-
tinuously.

4. When there is more than one partition on the SD card, you can switch between
mounting partitions by mounting, but make sure that the number of mount oper-
ations is equal to the number of unmount operations to ensure that all mounted
partitions are completely umount.

18

CV180x CV181x Peripheral Driver Operation GuideCHAPTER 5. I2C OPERATION GUIDE

5 I2C Operation Guide

5.1 Operation Preparation
I2C is prepared for operation as follows:

• Use the kernel released by SDK。

5.2 Operation Process
• Load the kernel. The default I2C-related modules are all built into the kernel, and no install

commands need to be executed.

• The I2C devices mounted on the I2C controller can be read and written by running the I2C
read and write command under the console or by writing the I2C read and write program
in kernel or user mode.

5.3 Interface Rate Setting Instructions
If you want to change the interface rate, you need to modify the“clock_frequency”of i2c node
in build/boards/default/dts/cv180x/cv180x_base.dtsi or

build/boards/default/dts/cv181x/cv181x_base.dtsi, and recompile the kernel.

i2c0: i2c@04000000 {
compatible = "snps,designware-i2c";
clocks = <&clk CV180X_CLK_I2C>;
reg = <0x0 0x04000000 0x0 0x1000>;
clock-frequency = <400000>;

#size-cells = <0x0>;
#address-cells = <0x1>;
resets = <&rst RST_I2C0>;
reset-names = "i2c0";

};

19

CV180x CV181x Peripheral Driver Operation GuideCHAPTER 5. I2C OPERATION GUIDE

5.3.1 Examples of I2C Read and Write Commands:
You can send relevant iic commands in linux terminal to detect bus devices and read or write the
i2c devices in bus.

1. i2cdetect -l

Detect iic buses in system. （It can be i2c-0, i2c-1，i2c-2，i2c-3，i2c-4 in cv180x）

2. i2cdetect -y -r N

Detect all the address of devices which are connected with i2c-N bus. The example below
is used detect devices which are connected with i2c-2 bus.

3. i2cdump -f -y N M

View the values of all registers in the device with address M on i2c-N

4. i2cget -f -y 0 0x3c 0x00//

Reads the value of register 0x00 on a device at address 0x3c on i2c-0

5. i2cset -f -y 0 0x3c 0x40 0x12//

Write to register 0x40 on device at address 0x3c on i2c-0

5.3.2 I2C Read-Write Program Example with Kernel Mode:
This example demonstrates how to read and write I2C device in the kernel space.

Step 1. Assuming that the I2C device is known to be mounted on I2C controller 0, call
i2c_get_adapter() function to get the I2C controller structure adapter:

adapter = i2c_ger_adapter(0);

Step 2. Through i2c_new_device() function to associate the I2C controller with the I2c device
to obtain the client structure of the I2C device:

client = i2c_new_device(adapter, &info)

Note: The info structure provides the device address for i2c

Step 3. Call the standard read and write functions provided by the I2C core layer to read and
write to device:

20

CV180x CV181x Peripheral Driver Operation GuideCHAPTER 5. I2C OPERATION GUIDE

ret = i2c_master_send(client, buf, count);

ret = i2c_master_recv(client, buf, count);

Note: Client is the client structure obtained in step 2, buf is the register address and
data to be read and written, count is the length of buf.

The code example is as follows:

// Announce a I2C device named "dummy" with device address 0x3c
static struct i2c_board_info info = {

I2C_BOARD_INFO("dummy", 0x3C),
};
static struct i2c_client *client;

static int cvi_i2c_dev_init(void) {
// Assign I2C Controller Pointer
struct i2c_adapter *adapter;

adapter = i2c_get_adapter(0);
client = i2c_new_device(adapter, &info);
i2c_put_adapter(adapter);
return 0;
}

static int i2c_dev_write(char *buf, unsigned int count) {
int ret;

ret = i2c_master_write(client, buf, count);
return ret;

}

static int i2c_dev_read(char *buf, unsigned int count) {
int ret;

ret = i2c_master_recv(client, buf, count);
return ret;

}

5.3.3 I2C Read-Write Program Example with User Mode:
This operation example reads and writes I2C device through the I2C reader in the user space.

Step 1. Open the device file corresponding to the I2C bus and get the file descriptor:

i2c_file = open("/dev/i2c-0", O_RDWR);
if (i2c_file < 0) {

printf("open I2C device failed %d\n", errno);
(continues on next page)

21

CV180x CV181x Peripheral Driver Operation GuideCHAPTER 5. I2C OPERATION GUIDE

(continued from previous page)

return -ENODEV;
}

Step 2. Read and write data:

ret = ioctl(file, I2C_RDWR, &packets);
if (ret < 0) {

perror("Unable to send data");
return ret;

}

Note: Read and write operations need to be specified on flags

struct i2c_msg messages[2];
int ret;

/*
* In order to read a register, we first do a "dummy write" by writing
* 0 bytes to the register we want to read from. This is similar to
* the packet in set_i2c_register, except it's 1 byte rather than 2.
*/
outbuf = reg;
messages[0].addr = addr;
messages[0].flags = 0;
messages[0].len = sizeof(outbuf);
messages[0].buf = &outbuf;

/* The data will get returned in this structure */
messages[1].addr = addr;
/* | I2C_M_NOSTART */
messages[1].flags = I2C_M_RD;
messages[1].len = sizeof(inbuf);
messages[1].buf = &inbuf;

22

CV180x CV181x Peripheral Driver Operation GuideCHAPTER 6. SPI OPERATION GUIDE

6 SPI Operation Guide

6.1 Operation Preparation
The preparation for operation of SPI is as follows:

• Kernel and file system using published SDK. File systems can use squashFS or ext4 pub-
lished by the SDK. You can also mount to NFS over the network via the local file system

6.2 Operation Process
• Load the kernel. The default SPI-related modules are all built into the kernel and no install

commands need to be executed.

• Running SPI read and write commands under the console or writing SPI read and write
programs in kernel or user space which allows you to read and write SPI devices mounted
on the SPI controller.

6.3 Operation Example

6.3.1 SPI Read-Write Program Example with Kernel Mode：

This operation example demonstrates how to read and write to SPI device through SPI reader
and writer in kernel space.

Step 1. Call the SPI core-level function spi_busnum_to_master(), to get a description of the
SPI controller architecture:

master = spi_busnum_to_master(bus_num);

// bus_num is the controller number of the SPI device for reading and writing

// master is the spi_master struct type pointer to describe the SPI controller.

Step 2. Call the SPI core layer function by the name of the spi device on the core layer to get
the structure that is mounted on the SPI controller to describe the SPI device:

23

CV180x CV181x Peripheral Driver Operation GuideCHAPTER 6. SPI OPERATION GUIDE

snprintf(str, sizeof(str), “%s.%u”, dev_name(&master->dev), cs);

dev = bus_find_device_by_name(&spi_bus_type, NULL, str);

spi = to_spi_device(dev);

//spi_buf_type is a bus_type structure type variable that describes the SPI bus

// spi is to describe the SPI peripheral spi_device structure type pointer

Step 3. Calling the SPI core layer function will spi_transfer added to spi_message queue.
spi_message_init(&m)

spi_message_add_tail(&t, &m)

//t is spi_transfer structure type variable

//m isspi_message structure type variable

Step 4. Call the SPI Core Layer Read-Write function to read and write to device

status = spi_sync(spi, &m);

status = spi_async(spi, &m)

// spi is the spi_device structure type pointer to describe the SPI device

//spi_sync function is used to reads and writes SPI synchronously

//spi_async function is used to reads and writes SPI asynchronous

The code example is as follows: This code sample is for reference only, not for practical use.

// Incoming SPI controller bus number and processor number
static unsigned int busnum;
module_param(busnum, uint, 0);
MODULE_PARM_DESC(busnum, "SPI bus number (default=0)");

static unsigned int cs;
module_param(cs, uint, 0);
MODULE_PARM_DESC(cs, "SPI processor select (default=0)");

extern struct bus_type spi_bus_type;

// Declare the structure of the SPI controller static struct spi_master *master;

// Declare the structure of SPI peripherals
static struct spi_device *spi_device;

static int __init spidev_init(void) {
char *spi_name;
struct device *spi;

master = spi_busnum_to_master(busnum);
spi_name = kzalloc(strlen(dev_name(&master->dev)), GFP_KERNEL);

if (!spi_name)
(continues on next page)

24

CV180x CV181x Peripheral Driver Operation GuideCHAPTER 6. SPI OPERATION GUIDE

(continued from previous page)

return -ENOMEM;

snprintf(spi_name, sizeof(spi_name), "%s.%u", dev_name(&master->dev), cs);
spi = bus_find_device_by_name(&spi_bus_type, NULL, spi_name);
if (spi == NULL)

return -EPERM;

spi_device = to_spi_device(spi);
if (spi_device ==NULL)

return -EPERM;

put_device(spi);
kfree(spi_name);

return 0;
}

int spi_dev_write(, void *buf, unsigned long len, int buswidth)
{

struct spi_device *spi = spi_device;
struct spi_transfer t = {

.speed_hz = 2000000,

.tx_buf = buf,
// buf needs to fill in device addr, register addr, write data and␣

↪→other information according to peripheral device specifications
.len = len,

};
struct spi_message m;
spi->mode = SPI_MODE_0;

if (buswidth == 16)
t.bits_per_word = 16;

else
t.bits_per_word = 8;

if (!spi) {
return - ENODEV;

}

spi_message_init(&m);
spi_message_add_tail(&t, &m);
return spi_sync(spi, &m);

}

int spi_dev_read(unsigned char devaddr, unsigned char reg_addr, void *buf,␣
↪→size_t len)
{

struct spi_device *spi = spi_device;

(continues on next page)

25

CV180x CV181x Peripheral Driver Operation GuideCHAPTER 6. SPI OPERATION GUIDE

(continued from previous page)

int ret;
u8 txbuf[4] = { 0, };
struct spi_transfer t = {

.speed_hz = 2000000,

.rx_buf = buf,

.len = len,
};

struct spi_message m;
spi->mode = SPI_MODE_0;

if (!spi) {
return -ENODEV;

}
txbuf[0] = devaddr;

txbuf[1] = 0;
txbuf[2] = reg_addr; //txbuf[1] &txbuf[2] Fill in 1 byte or 2 bytes␣

↪→depending on the device bit width, this example is 2 bytes bit width
t.tx_buf = txbuf;

spi_message_init(&m);
spi_message_add_tail(&t, &m);
ret = spi_sync(spi, &m);

return ret;
}

6.3.2 SPI Read-Write Program Example In User Space
This operation example reads and writes to SPI device mounted on SPI controller 0 in user space.
(Specific implementations can refer to tools/spi/spidev_test.c)

Step 1: Open the device file corresponding to the SPI bus to get the file descriptor.

static const char *device = "/dev/spidev32766.0";
⋯
fd = open(device, O_RDWR);
if (fd < 0)

pabort("can't open device");

Note: The default node for peripherals mounted on SPI Controller 1 is
“dev/spidev32765.0”

The default node for peripherals mounted on SPI Controller 2 is“dev/spidev32764.0”

The default node for peripherals mounted on SPI Controller 3 is“dev/spidev32763.0”

Simply replace the node name and the rest will be the same as the device mounted
on the SPI controller 0.

Step 2: Setting SPI transfer mode through ioctl：

26

CV180x CV181x Peripheral Driver Operation GuideCHAPTER 6. SPI OPERATION GUIDE

/*
* spi mode
*/
ret = ioctl(fd, SPI_IOC_WR_MODE32, &mode);
if (ret == -1)

pabort("can't set spi mode");
ret = ioctl(fd, SPI_IOC_RD_MODE32, &mode);
if (ret == -1)

pabort("can't get spi mode");

Note: Refer to the following figure or the kernel code for the model value configuration
include/linux/spi/spi.h,

Ex. mode = SPI_MODE_3 | SPI_LSB_FIRST;

#define SPI_CPHA 0x01 /* clock phase */
#define SPI_CPOL 0x02 /* clock polarity */
#define SPI_MODE_0 (0|0) /* (original MicroWire) */
#define SPI_MODE_1 (0|SPI_CPHA)
#define SPI_MODE_2 (SPI_CPOL|0)
#define SPI_MODE_3 (SPI_CPOL|SPI_CPHA)

Step 3: Setting SPI transmission bandwidth through ioctl：

/*
* bits per word
*/
ret = ioctl(fd, SPI_IOC_WR_BITS_PER_WORD, &bits);
if (ret == -1)

pabort("can't set bits per word");

ret = ioctl(fd, SPI_IOC_RD_BITS_PER_WORD, &bits);
if (ret == -1)

pabort("can't get bits per word");

Step 4: Set SPI transfer speed through ioctl (generally recommended speed = 25M)：

/*
* max speed hz
*/
ret = ioctl(fd, SPI_IOC_WR_MAX_SPEED_HZ, &speed);
if (ret == -1)

pabort("can't set max speed hz");

ret = ioctl(fd, SPI_IOC_RD_MAX_SPEED_HZ, &speed);
if (ret == -1)

pabort("can't get max speed hz");

Step 5: Read and write data using ioctl：

27

CV180x CV181x Peripheral Driver Operation GuideCHAPTER 6. SPI OPERATION GUIDE

ret = ioctl(fd, SPI_IOC_MESSAGE(1), &tr);
if (ret < 1)

pabort("can't send spi message");

Note: tr transmits the first address of the spi_ioc structure array of a message.

28

CV180x CV181x Peripheral Driver Operation GuideCHAPTER 7. GPIO OPERATION GUIDE

7 GPIO Operation Guide

7.1 GPIO Preparation
• Use the kernel released by SDK.

7.2 Operation Process
• By default, the GPIO-related kernel modules are built into the kernel and no load commands

need to be executed.

• GPIO can be input mode or output mode by executing GPIO read or write commands
under the console or by calling GPIO APIs in kernel or user space APP.

7.3 Operation Example

7.3.1 GPIO Operation Command Example
Step 1: Use the echo command in the console to export GPIO number N for manipulation:

echo N > /sys/class/gpio/export

N Indicates the number of the GPIO to be operated. GPIO number = GPIO group
number + offset value.

Taking GPIO1_2 pin in the schematic diagram as an example, GPIO1 corresponds
to GPIO group number 448 and offset value 2.

So the GPIO number N is 448 + 2 = 450

The corresponding group number is as below:

GPIO0 corresponds to the linux group number 480

GPIO1 corresponds to the linux group number 448

GPIO2 corresponds to the linux group number 416

GPIO3 corresponds to the linux group number 384

29

CV180x CV181x Peripheral Driver Operation GuideCHAPTER 7. GPIO OPERATION GUIDE

PWR_GPIO corresponds to the linux group number 352

After echo N > /sys/class/gpio/export, generate the directory: /sys/class/gpio/gpioN

Step 2: Use the echo command in the console to set the GPIO direction:

for input：echo in > /sys/class/gpio/gpioN/direction

for output：echo out > /sys/class/gpio/gpioN/direction

For example:

set GPIO1_2 (the number is 450) to input mode：

echo in > /sys/class/gpio/gpio450/direction

set GPIO1_2 (the number is 450)to output mode：

echo out > /sys/class/gpio/gpio450/direction

Step 3: Use the cat commands in the console to read GPIO input values or use the echo commands
to set GPIO output values :

check the input value:

cat /sys/class/gpio/gpioN/value

output low：

echo 0 > /sys/class/gpio/gpioN/value

output high：

echo 1 > /sys/class/gpio/gpioN/value

Step 4: After the resource is used, run the echo command on the console to release resources：

echo N > /sys/class/gpio/unexport

Note: You can enable the sysfs debug function of GPIO by turning on the CONFIG_DEBUG_FS
option, and check the base number corresponding to GPIO PIN with the following command
before operation:

cat /sys/kernel/debug/gpio

7.3.2 GPIO Operation Program Example with Kernel Space
GPIO Read-Write Operation program example in kernel space:

Step 1: Register GPIO：

gpio_request(gpio_num, NULL);

gpio_num is the GPIO number to be operated on, which is equal to “GPIO Group
Number + Intra-Group Offset Number”

Step 2: Set GPIO direction:

for input：gpio_direction_input(gpio_num)
for output：gpio_direction_output(gpio_num, gpio_out_val)

30

CV180x CV181x Peripheral Driver Operation GuideCHAPTER 7. GPIO OPERATION GUIDE

Step 3: View GPIO input values or set GPIO output value:

check the input value: gpio_get_value(gpio_num);
output low：gpio_set_value(gpio_num, 0);
output high：gpio_set_value(gpio_num, 1);

Step 4: Release registered GPIO number:

gpio_free(gpio_num);

GPIO interrupt operation program example with kernel mode：

Step 1: Register GPIO：

gpio_request(gpio_num, NULL);

gpio_num is the GPIO number to be operated on, which is equal to "GPIO Group␣
↪→Number + Intra-Group Offset Number"

Step 2: Set GPIO Direction：

gpio_direction_input(gpio_num);

For GPIO pins to be interrupt sources, the direction must be configured as input
mode.

Step 3: The interrupt number corresponding to the GPIO number of the mapping operation:

irq_num = gpio_to_irq(gpio_num);

The interrupt number is the return value.

Step 4: Register interrupt:

request_irq(irq_num, gpio_dev_test_isr, irqflags, "gpio_dev_test", &
↪→gpio_irq_type))

Irqflags is a type of interrupt that needs to be registered, and the common types are:

IRQF_SHARED ：Sharing Interrupt；

IRQF_TRIGGER_RISING ：Rising edge triggering；

IRQF_TRIGGER_FALLING ：Drop edge trigger；

IRQF_TRIGGER_HIGH ：High level trigger；

IRQF_TRIGGER_LOW ：Low level trigger

Step 5: Release registered interrupts and GPIO numbers at end：

free_irq(gpio_to_irq(gpio_num), &gpio_irq_type);
gpio_free(gpio_num);

31

CV180x CV181x Peripheral Driver Operation GuideCHAPTER 7. GPIO OPERATION GUIDE

7.3.3 GPIO Operation Example with User Mode
GPIO Read-Write Operation program example with user space:

Step 1: Number the GPIO as expor for manipulation：

fp = fopen("/sys/class/gpio/export", "w");
fprintf(fp, "%d", gpio_num);
fclose(fp);

gpio_num is the GPIO number to be operated on, which is equal to “GPIO Group
Number + Intra-Group Offset Number”

Step 2: Set GPIO direction：

fp = fopen("/sys/class/gpio/gpio%d/direction", "rb+");
for input：fprintf(fp, "in");
for output：fprintf(fp, "out");

fclose(fp);

Step 3: View GPIO input value or set GPIO output value：

fp = fopen("/sys/class/gpio/gpio%d/direction", "rb+");
check input：fread(buf, sizeof(char), sizeof(buf) - 1, fp);
output low:
strcpy(buf, “0”);
fwrite(buf, sizeof(char), sizeof(buf) - 1, fp);
output high:
strcpy(buf, “1”);
fwrite(buf, sizeof(char), sizeof(buf) - 1, fp);

Step 4: Number the GPIO manipulated as unexport:

fp = fopen("/sys/class/gpio/unexport", "w");
fprintf(fp, "%d", gpio_num);
fclose(fp);

32

CV180x CV181x Peripheral Driver Operation GuideCHAPTER 8. UART OPERATION GUIDE

8 UART operation guide

8.1 The Operation Preparation of UART Is as
Follows

• Use the kernel released by SDK。

8.2 Module Compilation
• The source path is drivers/uart. When users need to access UART devices, they first need

to specify the UART source path and header file path in the compilation script. After
successful compilation, a library file named libuart.a is generated in the out directory. The
library file needs to be specified with the -luart parameter when linking

8.3 Operation Example
Step 1:

Call the following interface in the initialization function to implement UART driver registration：

uart_dev_init();

If dma is enabled to receive data, dmac initialization is performed and called in the initialization
function：

cvi_dmac_init();

Step 2:

Open the specified UART by calling open from the /dev/ttySN node

Step 3:

After opening UART, ioctl configuration read can be called to read data, write can send data,
read can be blocked by select

Step 4:

33

CV180x CV181x Peripheral Driver Operation GuideCHAPTER 8. UART OPERATION GUIDE

When UART is not used, close is called to close, after which UART controller no longer receives
data from the serial port.

8.4 Action Sample UART API Reference
• uart_dev_init: UART Device Initialization

• uart_suspend: UART Device Suspend

• uart_resume: UART Device Wake Up

8.4.1 uart_dev_init
【Description】

UART Device Initialization

【Syntax】

int uart_dev_init(void);

【参数】

Parameters Description Input / Output
None None None

8.4.2 uart_suspend
【Description】

UART Device Suspend

【Syntax】

int uart_suspend(void);

【参数】

Parameters Description Input / Output
Data Reserved, passed in NULL None

【Return Value】

Return Value Description
0 Success
Others Failure

34

CV180x CV181x Peripheral Driver Operation GuideCHAPTER 8. UART OPERATION GUIDE

8.4.3 uart_resume
【Description】

UART Initial wake-up of device。

【Syntax】

int uart_resume(void);

【参数】

Parameters Description Input / Output
Data Not used, passing in NULL None

【Return Value】

Return Value Description
0 Success
Others Failure

8.5 ioctl Configuration Instructions
【Description】

After turning on UART, configure UART baud rate, dma reception, blocking reads,
wired control, etc. through ioctl.
For example, configure baud rate:
ret = ioctl(fd, CFG_BAUDRATE, 9600);

【Configuration Instructions】

35

CV180x CV181x Peripheral Driver Operation GuideCHAPTER 8. UART OPERATION GUIDE

Command Number Command
Code

Parameters Description

UART_CFG_BAUDRATE0x101 baud rate Configure baud rate, UART0 default
baud rate
115200; UART1, UART2, UART3 are
9600
Supports a maximum baud rate of
921600

UART_CFG_DMA_RX 0x102 0 or 1 0: Configured as interrupt receiving
mode;
1: Configured DMA reception defaults
to interrupt
type

UART_CFG_DMA_TX 0x103 0 or 1 0: Configured as interrupt receiving
mode;
1: Configured DMA reception defaults
to interrupt type

UART_CFG_RD_BLOCK0x104 0 or 1 0: Configure read as non-blocking
mode;
1: Configure event blocking read
The default is blocking mode;

UART_CFG_ATTR 0x105 0 or 1 Configure check bits, data bits, stop
bits, FIFO,
CTS/RTS, etc
The default is: no check bit, 8 bits of
data bit, 1 bit
Stop bit, no CTS/RTS.
Refer to the header file struct
uart_attr

UART_CFG_PRIV 0x110 Custo
mization

Drive custom commands

36

CV180x CV181x Peripheral Driver Operation GuideCHAPTER 9. WATCHDOG OPERATION GUIDE

9 Watchdog Operation Guide

9.1 Preparations of Watchdog Are as Follow:
• Use the kernel released by SDK

9.2 Module Compile
• Insert module :cv180x: insmod cv180x_wdt.ko, cv181x: insmod cv181x_wdt.ko.

• To operate the Watchdog, run the Watchdog read and write command in the console or
write the Watchdog read and write program in kernel space or user space.

9.2.1 Operation Example
Watchdog uses the standard linux framework to provide a hardware watchdog. Users can use
watchdog simply by turning it on, off, or setting timeout. The system restarts when the watchdog
timeout occurs.

The Watchdog is disabled by default. Customers can decide whether to enable it. The timeout
times that can be specified are 1s, 2s, 5s, 10s, 21s, 42s, and 85s.

When the user input timtout time is 8s, the driver will select a timeout greater than or equal to
the value of 10s; If timeout is not set, the driver uses 42s by default.

• Turn on WATCHDOG

Open the /dev/watchdog device node to start watchdog. You should ping (feed the dog) imme-
diately after opening, otherwise wdt will restart immediately.

int wdt_fd = -1;
wdt_fd = open("/dev/watchdog", O_WRONLY);
if (wdt_fd == -1)
{

// fail to open watchdog device
}
ioctl(fd, WDIOC_KEEPALIVE, 0);

• Turn off WATCHDOG

37

CV180x CV181x Peripheral Driver Operation GuideCHAPTER 9. WATCHDOG OPERATION GUIDE

The driver supports“Magic Close”. The magic character‘V’must be written to the watchdog
device before closing the watchdog.

If the userspace daemon shuts down the device without sending ‘V’, the watchdog will keep
counting.If the dog is not fed for a given period of time, it will result in a timeout and the system
will restart.

The reference code is as follows：

int option = WDIOS_DISABLECARD;
ioctl(wdt_fd, WDIOC_SETOPTIONS, &option);
if (wdt_fd != -1)
{

write(wdt_fd, "V", 1);
close(wdt_fd);
wdt_fd = -1;

}

• Set the TIMEOUT value

Set timeout with unit seconds by using the standard IOCTL command WDIOC_SETTIMEOUT.
The timeout times that can be specified are 1s, 2s, 5s, 10s, 21s, 42s, and 85s.

#define WATCHDOG_IOCTL_BASE 'W'
#define WDIOC_SETTIMEOUT _IOWR(WATCHDOG_IOCTL_BASE, 6, int)

int timeout = 10;
ioctl(wdt_fd, WDIOC_SETTIMEOUT, &timeout);

• PING watchdog

Ping watchdog through the standard IOCTL command, WDIOC_KEEPALIVE.

while (1) {
ioctl(fd, WDIOC_KEEPALIVE, 0);
sleep(1);

}

38

CV180x CV181x Peripheral Driver Operation GuideCHAPTER 10. PWM OPERATION GUIDE

10 PWM Operation Guide

10.1 The Preparations for PWM Operation Are
as Follow

• Use the kernel released by SDK

10.2 Operation Process
• Insert module :cv180x: Insmod cv180x_pwm.ko, cv181x: insmod cv181x_pwm.ko.

• Run PMW read/write command under console or write PWM read/write program in kernel
space or user space to carry out input/output operation on PWM.

• PWM operation has 16 channels at 100MHz constant frequency clock, each channel can be
controlled independently.

• Cv180X/CV181X has 4 PWM IP (pwmprocessor0/ pwmprocessor4/ pwmprocessor8/ pwm-
processor12), each IP controls 4 channels, can control 16 signals in total. The circuit dia-
gram is represented by pwm0 to pwm15

In Linux sysfs, the pwm0 to pwm3 device nodes are as follows:

/sys/class/pwm/pwmprocessor0/pwm0~3

In Linux sysfs, the pwm4 to pwm7 device nodes are listed as follows:

/sys/class/pwm/pwmprocessor4/pwm0~3

And so on

39

CV180x CV181x Peripheral Driver Operation GuideCHAPTER 10. PWM OPERATION GUIDE

10.3 Operation Example

10.3.1 PWM Operation Commands Example
Step 1:

Use the echo command in the console to configure the PWM number to be operated,
for example, PWM1：

echo 1 > /sys/class/pwm/pwmprocessor0/export

Step 2:

Set the duration of a PWM cycle (unit: ns)：

echo 1000000 >/sys/class/pwm/pwmprocessor0/pwm1/period

Step 3:

Set the “ON”time of a cycle(unit: ns), namely the duty cycle=
duty_cycle/period=50% :

echo 500000 >/sys/class/pwm/pwmprocessor0/pwm1/duty_cycle

Step 4:

Enable the PWM :

echo 1 >/sys/class/pwm/pwmprocessor0/pwm1/enable

10.3.2 An Example of a Program to Operate Through File
IO

IO read-write operation program example with user space:

Step 1:

Configure the number of the PWM to be operated, for example, PWM1：

fd = open("/sys/class/pwm/pwmprocessor0/export", O_WRONLY);
if(fd < 0)
{

dbmsg("open export error\n");
return -1;

}
ret = write(fd, "1", strlen("0"));
if(ret < 0)
{

dbmsg("Export pwm1 error\n");
return -1;

}

Step 2:

40

CV180x CV181x Peripheral Driver Operation GuideCHAPTER 10. PWM OPERATION GUIDE

Set the duration of a PWM cycle (unit: ns):

fd_period = open("/sys/class/pwm/pwmprocessor0/pwm1/period", O_RDWR);
ret = write(fd_period, "1000000”,strlen("1000000”));
if(ret < 0)
{

dbmsg("Set period error\n");
return -1;

}

Step 3:

Set the “ON”time of a cycle. (unit: ns) Duty cycle=50% for this example.

fd_duty = open("/sys/class/pwm/pwmprocessor0/pwm1/duty_cycle", O_
↪→RDWR);
ret = write(fd_duty, "500000", strlen("500000"));
if(ret < 0)
{

dbmsg("Set period error\n");
return -1;

}

Step 4:

Enable PWM:

fd_enable = open("/sys/class/pwm/pwmprocessor0/pwm1/enable", O_RDWR);
ret = write(fd_enable, "1", strlen("1"));
if(ret < 0)
{

dbmsg("enable pwm0 error\n");
return -1;

}

41

CV180x CV181x Peripheral Driver Operation GuideCHAPTER 11. ADC OPERATION GUIDE

11 ADC Operation Guide

11.1 The Preparations of ADC Operation Are as
Follow

• Use the kernel released by SDK.

11.2 Operation Process
• Insert module: cv180x, insmod cv180x_saradc.ko, cv181x, insmod cv181x_saradc.ko.

• Run ADC read/write command under the console or write ADC read/write program in
kernel space or user space to carry out input/output operation on ADC.

• The user layer accesses the IIO interface to implement trigger and sampling operations of
three-channel and 12-bit ADC.

• 1.5v ref reference voltage.

11.3 Operation Example

11.3.1 ADC Operation Commands Example:
Step 1:

Specify ADC channels 1 to 6, in this example, ADC1:

(ADC channel 4 is dedicated to measuring VDDC_RTC; ADC channel 5 is
PWR_GPIO1; ADC channel 6 is PWR_VBAT_

echo 1 > /sys/class/cvi-saradc/cvi-saradc0/device/cv_saradc

Step 2:

Read selected ADC channe

cat /sys/class/cvi-saradc/cvi-saradc0/device/cv_saradc

42

CV180x CV181x Peripheral Driver Operation GuideCHAPTER 11. ADC OPERATION GUIDE

11.3.2 ADC Read-Write Operation Program Example with
User Space

Step 1:

Configure the ADC channel number to be operated：

fd = open(/sys/class/cvi-saradc/cvi-saradc0/device/cv_saradc”, O_
↪→RDWR|O_NOCTTY|O_NDELAY));
If (fd < 0)

printf("open adc err!\n");
write(fd, “1”, 1);

Step 2:

Read the ADC values：

char buffer[512];
int len = 0;
int adc_value = 0;

len = read(fd, buffer, 10);
if (len != 0) {

adc_value= atoi(buffer);
printf("adc value is %d\n", adc_alue);

}
close(fd);

43

	Disclaimer
	Ethernet Operation Guide
	Operation Example
	IPv6 Description
	IEEE 802.3x Flow Control Function
	Flow Control Function Description
	Flow Control Function Configuration
	Ethtool Configuration Interface Flow Control Function

	USB Operation Guide
	Operational Readiness
	Uboot Operation Process
	The USB Host Operation Process Base on the Uboot
	The USB Drive Operation Process Based on the Uboot

	Linux Host
	USB 2.0 Host Operation Process
	USB Pen Drive Operation Process

	Linux Device
	USB 2.0 Device Operation Process
	Examples of storage device operations in USB device
	Example of Terminal Device Operation in USB device
	Example of RNDIS Device Operation in USB Device
	Operation Example of CVITEK USB GADGET in USB device

	Points to Pay Attention to in Operation

	SD/MMC card operation guide
	Operation preparation
	Operation Flow
	Operation example
	Points to Pay Attention to in Operation

	I2C Operation Guide
	Operation Preparation
	Operation Process
	Interface Rate Setting Instructions
	Examples of I2C Read and Write Commands:
	I2C Read-Write Program Example with Kernel Mode:
	I2C Read-Write Program Example with User Mode:

	SPI Operation Guide
	Operation Preparation
	Operation Process
	Operation Example
	SPI Read-Write Program Example with Kernel Mode：
	SPI Read-Write Program Example In User Space

	GPIO Operation Guide
	GPIO Preparation
	Operation Process
	Operation Example
	GPIO Operation Command Example
	GPIO Operation Program Example with Kernel Space
	GPIO Operation Example with User Mode

	UART operation guide
	The Operation Preparation of UART Is as Follows
	Module Compilation
	Operation Example
	Action Sample UART API Reference
	uart_dev_init
	uart_suspend
	uart_resume

	ioctl Configuration Instructions

	Watchdog Operation Guide
	Preparations of Watchdog Are as Follow:
	Module Compile
	Operation Example

	PWM Operation Guide
	The Preparations for PWM Operation Are as Follow
	Operation Process
	Operation Example
	PWM Operation Commands Example
	An Example of a Program to Operate Through File IO

	ADC Operation Guide
	The Preparations of ADC Operation Are as Follow
	Operation Process
	Operation Example
	ADC Operation Commands Example:
	ADC Read-Write Operation Program Example with User Space

