

ISP Tuning Guide

Version: 0.2.5

Release date: 2023-02-07

Copyright © 2020 CVITEK Co., Ltd. All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of CVITEK Co., Ltd. **SOPHGO** 算能科技 ISP Tuning Guide

Contents

1	Disclaimer							
2	PQ 1	Funing Text Files Relationship Description	3					
3	ISP 9 3.1 3.2 3.3	P System Overview Function Introduction Function Block Diagram Introduction to Each Module						
4	Over	view of Image Quality Tuning	9					
	4.1	Overview of Image Tuning for IPC Applications	9					
	4.2	Image Quality Tuning in Linear Mode	9					
		4.2.1 Sensor docking	10					
		4.2.2 Sensor and lens calibration	10					
		4.2.3 Brightness Dimension	11					
		4.2.4 Color Dimension	12					
		4.2.5 Contrast Dimension	12					
		4.2.6 Sharpness and noise dimensions	13					
	4.3	Image Quality Tuning in WDR Mode	14					
		4.3.1 WDR mode backlight scene face brightness enhancement tuning method .	15					
		4.3.2 Brightness Dimension	15					
		4.3.3 Motion Trailing Dimension of Composite Zone	16					
		4.3.4 Dynamic Range Dimension of Scene	16					
		4.3.5 Color Dimension	16					
		4.3.6 Contrast Dimension	16					
		4.3.7 Sharpness and noise dimensions	16					
		4.3.8 Tuning Method of Intense Light Suppression Scene at Night in WDR Mode	17					
		4.3.9 Brightness Dimension	17					
		4.3.10 Motion Trailing Dimension of Composite Area	18					
		4.3.11 Dynamic Range Dimension of Scene	18					
		4.3.12 Color Dimension	18					
		4.3.13 Contrast Dimension	18					
		4.3.14 Sharpness and noise dimensions	18					
5	Mod	ule Function	19					
	5.1	Black Level	19					
		5.1.1 Black Level Calibration Method	19					
		5.1.1.1 Environment and Related Equipments Preparation	19					
		5.1.1.2 Black Level Calibration Tool Interface	19					
		5.1.1.3 Black Level Calibration Step	20					
	5.2	DPC	20					
		5.2.1 DPC Tuning Method	20					

	5211	Functional Description 20
	5212	Key Parameters 22
	5.2.1.2	Tuning Steps 24
5.2	CrossTalls Por	Tuning Steps 24 ooval 25
0.0	5.2.1 Creard	Colle Demosral Turring Mathed
	0.5.1 Cross	
	5.3.1.1	Function Description
	5.3.1.2	Key Parameters
	5.3.1.3	Tuning Steps
5.4	Mesh Lens Sha	ading Correction (MLSC) $\ldots \ldots 27$
	5.4.1 MLSC	Calibration Method
	5.4.1.1	Environment and Related Equipments Preparation
	5.4.1.2	MLSC Calibration Tool Interface
	5.4.1.3	MLSC Calibration Steps
	5.4.2 MLSC	Tuning Method
	5.4.2.1	Function Description
	5.4.2.2	Kev Parameters 31
	5423	Tuning Steps 31
5.5	Radial Shadin	© Correction (BLSC) 32
0.0	551 BLSC	Calibration Methods 32
	5.5.1 1 5.5.1.1	Environment and Belated Equipments Proparation 32
	5519	PI SC Calibration Tool Interface 24
	0.0.1.2	$RLSC \subset Calibration \ Tool \ Interface \ \ldots \ \ldots \ S4$
	0.0.1.3	RLSC Calibration Steps
	5.5.2 RLSU	Tuning Method
	5.5.2.1	Function Description
	5.5.2.2	Key Parameters
	5.5.2.3	Tuning Steps
5.6	White Balance	9
	5.6.1 AWB	Calibration Method
	5.6.1.1	Environment and Related Equipments Preparation
	5.6.1.2	AWB Calibration Tool Interface
	5.6.1.3	AWB Calibration Steps 37
	5.6.2 AWB	Tuning Method $\dots \dots \dots$
	5.6.2.1	Function Description
	5.6.2.2	Key Parameters
	5.6.2.3	Tuning Steps
5.7	BNR	51
	5.7.1 BNR (Calibration Method 51
	5711	Environment and Related Equipment Preparation 52
	5712	BNR Calibration Tool Interface 52
	5.7.1.2	BNR Calibration Steps 53
	579 BNR	Suping Method 53
	5.7.2 DNR .	Function Description 52
	0.7.2.1	Function Description 53
	0.7.2.2	Key Parameters
Z 0	5.7.2.3	Tuning Steps
5.8	Demosaic	
	5.8.1 Demos	aic Tuning Method
	5.8.1.1	Function Description 57
	5.8.1.2	Key Parameters
	5.8.1.3	Tuning Steps
5.9	$WDR \dots$	
	5.9.1 WDR	Tuning Method $\ldots \ldots 63$

	5.9.1.1	Function Description
	5.9.1.2	Key Parameters
	5.9.1.3	Tuning Steps
5.10	$DRC \dots$	
	5.10.1 DRC T	Cuning method
	5.10.1.1	Function Description
	5.10.1.2	Key Parameters
	5.10.1.3	Tuning Steps
5.11	ССМ	
	5.11.1 CCM (Calibration Method $\ldots \ldots .76$
	5.11.1.1	Environment and Related Equipment Preparation
	5.11.1.2	CCM Calibration Tool Interface
	5.11.1.3	CCM Calibratin Steps
	5.11.2 CCM	Funing Method 78
	5.11.2.1	Function Description
	5.11.2.2	Key Parameters
	5.11.2.3	Tuning Steps
5.12	Gamma	
	5.12.1 Gamm	a Tuning Method
	5.12.1.1	Function Description
	5.12.1.2	Key Parameters
	5.12.1.3	GammaCOEFFI and SlopeAtZero Parameter Description 81
	5.12.1.4	Tuning Custom Curve with Parameters
	5.12.1.5	Using Control Points to Tune Custom Curves
5.13	Dehaze	
	5.13.1 Dehaze	e Tuning Method
	5.13.1.1	Function Description
	5.13.1.2	Key Parameters
	5.13.1.3	Tuning Steps
	5.13.1.4	Dehaze Parameters
5.14	RGBCAC	
	5.14.1 RGBC	AC Tuning Method
	5.14.1.1	Function Description
	5.14.1.2	Key Parameters
	5.14.1.3	Tuning Steps
5.15	LCAC	90
	5.15.1 LCAC	Tuning Method
	5.15.1.1	Function Description
	5.15.1.2	Key Parameters
	5.15.1.3	Tuning Steps
5.16	CLUT	94
	5.16.1 CLUT	Calibration Method
	5.16.1.1	Environment and Related Equipment Preparation
	5.16.1.2	CLUT Calibration Tool Interface
	5.16.1.3	CLUT Calibration Steps
	5.16.2 CLUT	Tuning Method
	5.16.2.1	Function Description
	5.16.2.2	Key Parameters
	5.16.2.3	Tuning Steps
5.17	PreSharpen	
	5.17.1 PreSha	rpen Tuning Method

	5.17.1.1 Function Description $\dots \dots 99$
	5.17.1.2 Key Parameters
	5.17.1.3 Tuning Steps $\dots \dots \dots$
5.18	3DNR
	5.18.1 3DNR Tuning Method $\dots \dots \dots$
	5.18.1.1 Function Description $\dots \dots \dots$
	5.18.1.2 Key Parameters $\dots \dots \dots$
	5.18.1.3 Tuning Steps \ldots 111
5.19	YNR
	5.19.1 YNR Tuning Method $\dots \dots \dots$
	5.19.1.1 Function Description $\dots \dots \dots$
	5.19.1.2 Key Parameters $\ldots \ldots \ldots$
	5.19.1.3 Tuning Steps
5.20	CNR
	5.20.1 CNR Tuning Method
	5.20.1.1 Function Description $\dots \dots \dots$
	5.20.1.2 Key Parameters $\dots \dots \dots$
	5.20.1.3 Tuning Steps \ldots 121
5.21	CA
	5.21.1 CA Tuning Method $\dots \dots \dots$
	5.21.1.1 Function Description $\dots \dots \dots$
	5.21.1.2 Key Parameters $\dots \dots \dots$
	5.21.1.3 Precautions $\ldots \ldots \ldots$
5.22	CAC
	5.22.1 CAC Tuning Method $\dots \dots \dots$
	$5.22.1.1$ Function Description $\ldots \ldots \ldots$
	5.22.1.2 Key Parameters $\ldots \ldots \ldots$
	5.22.1.3 Tuning Steps $\ldots \ldots 127$
5.23	$DCI \dots \dots$
	5.23.1 DCI Tuning Method $\ldots \ldots \ldots$
	$5.23.1.1$ Function Description $\ldots \ldots \ldots$
	$5.23.1.2$ Key Parameters $\ldots \ldots \ldots$
	5.23.1.3 Tuning Steps
5.24	LDCI
	$5.24.1$ LDCI Tuning Method $\ldots \ldots 132$
	$5.24.1.1$ Fonction Discription $\ldots \ldots \ldots$
	$5.24.1.2$ Key Parameters \ldots 134
	5.24.1.3 Tuning Steps
5.25	CA_Lite
	5.25.1 CA_Lite Tuning Method
	5.25.1.1 Fonction Discription
	$5.25.1.2$ Key Parameters \ldots 138
	5.25.1.3 Tuning Steps
5.26	Sharpen $\ldots \ldots \ldots$
	$5.26.1$ Sharpen Tuning Method $\ldots \ldots \ldots$
	5.26.1.1 Function Description $\dots \dots \dots$
	$5.26.1.2$ Key Parameters $\ldots \ldots \ldots$
	5.26.1.3 Tuning Steps
5.27	Auto Exposure
	5.27.1 Auto Exposure Tuning Method
	$5.27.1.1$ Fonction Discription $\ldots \ldots 143$

5.27.1.2	Key Parameters																-	144
5.27.1.3	Tuning Steps									•								155

Revision History

Revi-	Date	Description					
sion							
0.1.0	2021/06/15	Initial release					
0.2.0	2022/09/30	Add some parameter descriptions					
0.2.1	2022/10/12	Update AWB module parameters					
0.2.2	2022/10/20	Add and remove some descriptions as common versions					
0.2.3	2022/10/31	Modify document format					
0.2.4	2022/11/22	Modify the overall flow chart of 2-1ISP and the description of LSC					
		calibration					
0.2.5	2023/02/07	Update AWB module parameters					

ISP Tuning Guide

1 Disclaimer

Terms and Conditions

The document and all information contained herein remain the CVITEK Co., Ltd' s ("CVITEK") confidential information, and should not disclose to any third party or use it in any way without CVITEK' s prior written consent. User shall be liable for any damage and loss caused by unauthority use and disclosure.

CVITEK reserves the right to make changes to information contained in this document at any time and without notice.

All information contained herein is provided in "AS IS" basis, without warranties of any kind, expressed or implied, including without limitation mercantability, non-infringement and fitness for a particular purpose. In no event shall CVITEK be liable for any third party' s software provided herein, User shall only seek remedy against such third party. CVITEK especially claims that CVITEK shall have no liable for CVITEK' s work result based on Customer' s specification or published shandard.

Contact Us

Address Building 1, Yard 9, FengHao East Road, Haidian District, Beijing, 100094, China

Building T10, UpperCoast Park, Huizhanwan, Zhancheng Community, Fuhai Street, Baoan District, Shenzhen, 518100, China

Phone +86-10-57590723 +86-10-57590724

Website https://www.sophgo.com/

Forum https://developer.sophgo.com/forum/index.html

2 PQ Tuning Text Files Relationship Description

The ISP Tuning Guide is a document that guides the user through the process of image tuning, covering basic concepts and steps. The process of using this document is relevant to the following document and is outlined below:

• [PQ Tools User Guide] details how to use the tool CviPQTools for image tuning.

3 ISP System Overview

3.1 Function Introduction

ISP system supports standard image processing functions, including bad point correction, lens shadow correction, auto exposure, auto white balance, auto focus, demosaic and other basic functions, as well as advanced processing functions such as noise reduction, WDR and DRC.

The main image processing functions supported by ISP are as follows:

- Black level correction (BLC)
- Static and Dynamic Defect Pixel Correction (DPC)
- CrossTalk Removal
- Lens shadow correction (LSC)
- Bayer noise reduction
- Demosaic processing
- Color Correction Matrix (CCM)
- Gamma correction
- Purple fringing correction (LCAC, RGBCAC and CAC)
- Wide Dynamic Range (WDR)
- Dynamic Range Compression (DRC)
- Auto Exposure (AE)
- Auto Focus (AF)
- Auto White Balance (AWB)
- 3A related statistical information output
- Image Sharpening (Sharpen)
- Auto dehaze treatment (Dehaze)
- Local Dynamic Contrast Improvement (LDCI)
- 3D noise reduction (3DNR)
- Color 3D look up table enhancement (CLUT)

- Brightness coloring
- Digital image stabilization

3.2 Function Block Diagram

The overall structure of ISP is shown in Fig. 3.1. The following chapters of this document will introduce the function of each module, the parameter calibration method and image quality tuning method of each module (BLC, DPC, MLSC, AWB, BNR, CCM and CLUT).

SOPHGO 算能科技 ISF

ISP Tuning Guide

Fig. 3.1: ISP Overall structure diagram

3.3 Introduction to Each Module

The following chapters of this document will introduce the function and the image quality tuning method of each module. The functions of ISP modules are shown in Table 3.1.

Module Name	Function						
Crop	Function of clipping the input image.						
BLC	Black level correction.						
DPC	Realize the function of detecting and correcting static defect pixel and						
	dynamic defect pixel.						
CrossTalkRemoval	Correct the imbalance between Gr and Gb channels.						
LSC	Provide lens shadow correction.						
WDR	Wide dynamic function of multi frame synthesis.						
DRC	Adjust the dynamic range of the image so that the display effect on						
	the display device is consistent with the human visual experience.						
BNR	Realize the image denoising function in Bayer domain.						
Demosaic	Convert Raw image in Bayer format to RGB image.						
AE	Provide automatic exposure information statistics to the software to						
	adjust the Sensor to achieve automatic exposure function.						
AWB	Provide global and regional statistical information to the software to						
	adjust the Sensor to achieve automatic white balance function.						
AF	The module outputs the statistical information related to the image						
	definition, and the software completes the auto focusing function based						
	on the statistical information.						
CAC	Realize the function of removing purple fringing of the image, and						
	improve the purple fringing of the image edge.						
CCM	Use the 3x3 matrix to correct the color.						
Gamma	Adjust the overall brightness of the image according to the gamma						
	curve.						
Dehaze	Dehaze the scene with haze to improve the contrast and clarity of the						
	image.						
CSC	Transform the RGB image into YUV image through 3x3 matrix.						
YNR	Realizes the function of removing bright noise.						
CNR	Provides the function of removing color noise and reducing color spots.						
Sharpen	Realizes the image sharpening function and increase the image clarity.						
DCI	Based on histogram equalization method to improve the overall image						
	contrast and the details of the dark area						
LDCI	Based on the method of image blocking statistics, the local contrast						
	of the image is enhanced, and the filtering parameters can be adjusted						
	to adjust the local range of local contrast enhancement.						
CLUT	Uses 3D LUT to achieve complex color adjustment functions, including						
	brightness adjustment and saturation adjustment.						
3DNR	Removes the noise in the image by time domain filtering, keep the						
	image details and reduce the coding bitrate.						
CA	Provides saturation adjustment and thermal imaging coloring func-						
	tions.						
CA_Lite	Provides saturation adjustment function.						
LDC	Realizes the lens deformity correction.						
DIS	Digital image stabilization function.						

4 Overview of Image Quality Tuning

SOPHGO

算能科技

Currently ISP processors are mainly targeted at IPC security scenarios, including linear and WDR modes. Due to the special needs of the security industry, the focus of IPC security scenarios on image quality is different from that of general consumer scenarios.

4.1 Overview of Image Tuning for IPC Applications

Current ISP processors for IPC security scenarios are divided into two modes: linear mode and WDR mode. These two modes focus on the dimensions of image quality, including the rationality and accuracy of the brightness and color of the image, the overall transparency and clarity of the image, and the ability to suppress noise. In addition, the dimension that WDR mode focuses on includes a reasonable dynamic range for the overall image, that is, dark details can be preserved and bright areas will not be overexposed. The following describes image quality tuning methods and Tuning principle in linear mode and WDR mode, respectively.

4.2 Image Quality Tuning in Linear Mode

Image quality tuning methods in linear mode mainly focus on four dimensions: brightness, color, transparency, sharpness and noise. Among them, modules related to brightness tuning are AE and LSC; modules related to color tuning are AWB, CCM and CLUT; modules related to transparency tuning are Gamma, Dehaze, DCI and LDCI; modules related to sharpness and noise suppression are DPC, BNR, Demosaic, 3DNR, YNR, CNR and Sharpen. The image quality tuning framework for IPC scenarios in linear mode is shown in Fig. 4.1.

Fig. 4.1: Image Tuning Framework for Linear Mode of IPC Application Scenario

4.2.1 Sensor docking

SOPI-IGO 算能科技

The main task of Sensor docking is to dock the processor with Sensor such as IMX327, to confirm whether the overall path is working properly, whether the modes can be switched smoothly, whether the parameters of each module drive Sensor reasonably under the default configuration, and whether the basic functions of AE work as expected.

4.2.2 Sensor and lens calibration

The process of Sensor and lens calibration is shown in Fig. 4.2. The main steps involved include black level calibration, Noise Profile calibration, static defect pixel calibration, LSC calibration, and AWB and CCM color calibration.

Fig. 4.2: Flowchart of Sensor and lens calibration

- Black Level Calibration: The first step in the ISP overall calibration process is black level calibration. Please refer to section 5.1.1 "Black Level Calibration Method" for detailed calibration methods.

- Noise Profile calibration: After the black level calibration is completed, Noise Profile is calibrated to provide noise reduction related modules such as BNR and 3DNR. Noise Profile calibration results are obtained according to different ISOs. The range of ISO values is $\{100, 200, 400, 800, 1600, 3200, 6400, 12800, 25600, 51200, 102400, 204800, 409600, 819200, 1638400, 3276800\}$. The range of ISO values is as wide as possible. Please refer to *section 5.7.1 "BNR Calibration Method"* for detailed calibration methods.

- Static Defective Pixel Calibration: The static defective pixel of the Sensor includes bright and dark pixels, while the static defective pixel calibration is related to the resolution of the Sensor. Static defective pixels tables containing bright and dark pixels need to be re-calibrated for different resolutions. The calibration results are obtained according to different ISOs.

- LSC calibration: The main purpose of LSC calibration is to eliminate the dark angle of the picture caused by uneven optical refraction of the lens. The calibration method is Mesh LSC (MLSC). In low illumination, the noise of dark corner of the picture is uneven due to Shading, which can be adjusted by MeshStr. Please refer to *section 5.4.1 "MLSC Calibration Method*" for specific calibration methods.

- AWB calibration: The principle of AWB calibration is to extract white point information under multiple light sources, namely R/G and B/G, and calculate Planck color temperature fitting curve. Because AWB is strongly related to the Sensor and lens filters, the AWB coefficients need to be re-calibrated for each lens or filter change. Please refer to section 5.6.1 "AWB Calibration Method" for the specific calibration methods.

- CCM calibration: The main principle of CCM calibration is to calculate a 3x3 matrix, so that the actual color values obtained from the first 18 color blocks of the 24 color cards captured by the sensor are as close as possible to the expected values. Generally, the raw obtained under three

light sources (D50, TL84 and A) is used to achieve the CCM calibration. Please refer to section 5.11.1 "CCM Calibration Method" for specific calibration methods.

After calibrating the sensor and lens above, the next step is to optimize the image quality of ISP modules, including the image quality optimization in different ISO settings.

Scenes to tune in linear mode include laboratory still life scenes and outdoor real-world scenes. Generally speaking, the parameters of ISP modules must be tuned for laboratory still life scenes at different illumination levels. The four dimensions of image quality, including brightness, color, contrast, sharpness and noise, should be tuned reasonably. Next, fine-tune the different actual outdoor scenes, which cover a variety of detailed scenes such as day and night, sunny and cloudy weather, and evening sunset.

Linear mode image quality is shown in Fig. 4.3 according to the tuning sequence of the four dimensions above.

Fig. 4.3: Sequence diagram for image quality tuning

4.2.3 Brightness Dimension

For the tuning of brightness dimension, it mainly tunes AE weight table, AE Route, AE target value, convergence speed and smoothness of AE module to achieve a reasonable overall image brightness.Before tuning AE, confirm that the black level and LSC have completed the correction.

Step 1. Determine the AE weight table. For IPC scenarios, attention is generally paid to the middle area of the picture, so the middle part of the AE weight table has a higher weight than the surrounding part.

Step 2. Determine how the AE Route determines the exposure distribution. Different scenarios require different exposure times and gain allocations.

Step 3. Adjust AE target values for laboratory still scenes. It is recommended to reach the bright area without exposure as the basis.

Step 4. For different application scenarios, tune the convergence speed and smoothness of AE to achieve a balance between them. The principle of tuning is to increase the convergence speed as much as possible while preventing AE oscillation. The convergence speed and smoothness of AE can generally be tested by switching lights in a laboratory still scene.

4.2.4 Color Dimension

SOPIIGO 算能科技

The tuning of color dimension mainly involves AWB and CCM.Before tuning the color, confirm that the black level and LSC calibration are complete and the AE module parameters are finished tuning.

Step 1. AWB calibration of 24 color cards using lab light box under D65, D50, A and D50 color temperature light sources for outdoor scenes to obtain white balance coefficients. In addition, more light sources such as TL84 and CWF can be added to improve the calibration accuracy.

Step 2. Using lab light box, CCM calibration is performed for 24 color cards under three light sources, D50, TL84 and A, each generating a 3x3 matrix.

Step 3. After the AWB and CCM calibration is completed, 24 color cards with different light sources are tested with Imatest to preliminarily confirm whether the calibrated AWB coefficients and CCM matrices meet the requirements.

Step 4. After preliminary confirmation of the laboratory scene, a large number of outdoor scene tests are required, covering typical scenarios such as mixing light sources, sunny and cloudy days, front-lighting and back-lighting, and evening sunset. Please refer to *sections 5.6.2 "AWB Tuning Method"* and *5.11.2 "CCM Tuning Method"* for specific tuning methods for AWB and CCM.

4.2.5 Contrast Dimension

The main modules involved in tuning the contrast dimension are Gamma, DCI, LDCI and Dehaze. Gamma is generally the main tuning module. Before tuning the contrast, confirm that black level and LSC calibration are complete, AE module, AWB and CCM parameters are finished tuning.

Step 1. Adjust the Gamma curve with the Gamma parameters to get a better contrast for the whole image, showing details in bright and dark areas. Please refer to section 5.12.1 "Gamma Tuning Method" for specific tuning methods for Gamma module.

Step 2. If you want to further tune the contrast, the tuning principle is mainly LDCI, supplemented by DCI and Dehaze. LDCI enables local contrast enhancement and improves the performance of bright and dark areas in the picture in terms of detail. Please refer to *section* 5.24.1 "LDCI Tuning Method" for specific tuning methods for LDCI. For specific tuning methods for DCI and Dehaze, refer to *sections* 5.23.1 "DCI Tuning Method" and 5.13.1 "Dehaze Tuning Method".

Step 3. After optimizing the parameters of Gamma, LDCI, DCI and Dehaze, test the gray scale card under the lab light box D50 to ensure the gray scale is no less than 18. Fig. 4.4 is a gray scale card diagram.

Step 4. Tune Gamma, LDCI, DCI and Dehaze appropriately for laboratory still scenes at different ISOs to achieve the desired contrast of the overall picture. In low illumination environment, it is recommended that the contrast intensity should not be too high to avoid noise enhancement.

Fig. 4.4: Gray scale card diagram

4.2.6 Sharpness and noise dimensions

SOPIIGO 算能科技

The main modules involved in the tuning of sharpness and noise dimension are DPC, BNR, Demosaic, 3DNR, YNR, CNR and Sharpen. Noise performance varies with illumination. Therefore, the parameters of the sharpness and noise module will be linked with ISO. For Tuning principle, it is recommended to first take sharpness as the priority, and then tune the noise reduction module if the key details and textures in the image can be satisfied. Before tuning sharpness and noise, confirm that black level and LSC calibration are complete, AE module, AWB, CCM and Gamma parameters are complete.

Step 1. First, tune the Demosaic parameters for the resolution card using the lab light box under the condition of ambient D50 light source and ISO100 until the objective requirements are met. Next, using this set of Demosaic parameters, we observe whether the lab still scene under ISO100 still meets the requirements, such as whether its high-frequency details can be interpolated, and we iterate back and forth to observe and tune it. Fig. 4.5 is a resolution card diagram. Please refer to *section 5.8.1 "Demosaic Tuning Method"* for specific tuning methods for Demosaic.

Step 2. Generally speaking, tuning the 3DNR first will converge the noise disturbance in the static area of the image to a stable state, and the trailing phenomenon in the moving area will be controlled reasonably. The sharpness of the whole picture can meet the requirements. Please refer to section 5.18.1 "3DNR Tuning Method" for detailed tuning methods. Next, the bright and color noise suppression of the overall image can refer to BNR (section 5.7.1 "BNR Calibration Method") and YNR module (section 5.19.1 "YNR Tuning Method") and CNR module (section 5.20.1 "CNR Tuning Method"), respectively. Among them, YNR can also make further noise reduction especially for the moving area of the object to reduce the noise disturbance. It should be noted that the tuning principle of BNR and YNR is to suppress the noise perturbation of the whole picture and to show as fine fragmentation as possible after noise reduction. Therefore, it is recommended that the noise reduction intensity should not be too large to tune.

Step 3. Tuning image sharpening includes PreSharpen module before the 3DNR and Sharpen module after the 3DNR, whose parameters are all linked according to ISO. The basic tuning guideline is to properly enhance image detail texture and edge sharpness before 3DNR, but to further tune the sharpening after 3DNR without exacerbating noise. Please refer to section 5.17.1 "PreSharpen" and section 5.26.1 "Sharpen Tuning Method" for detailed tuning methods.

Step 4. If the dynamic defective pixel removal function of DPC module is in the case of good

illumination, it is recommended that the intensity of relevant parameters be set to the minimum. The DPC dynamic defective pixel removal parameter is especially adjusted in a slightly lower illumination environment condition.

Fig. 4.5: Resolution Card Diagram

4.3 Image Quality Tuning in WDR Mode

Image quality tuning methods in WDR mode mainly focus on the brightness, color, dynamic range transparency and sharpness of the image, among which the modules related to brightness tuning are AE and LSC.

Modules related to color tuning, such as AWB, CCM, CA Lite, RGB CAC, CAC and CLUT.

Modules related to dynamic range tuning are WDR and DRC.

Modules related to transparency tuning are Gamma, Dehaze, DCI and LDCI.

Modules related to sharpness and noise suppression are DPC, BNR, Demosaic, 3DNR, YNR, CNR and Sharpen.

There are two typical scenarios that require the use of WDR mode, namely the brightness enhancement of faces in backlit scenes and the glare suppression scenes of neon signs and headlights at night.

An image quality tuning framework for WDR mode in IPC scenarios is shown in Fig. 4.6.

Fig. 4.6: IPC application scenario WDR mode tuning framework diagram

After completing the calibration procedure described above, the WDR mode image quality tuning is then performed for two typical application scenarios, namely the brightness enhancement of the face in the backlight scene and the glare suppression scene at night. The following describes the tuning methods for each of these two scenarios.

4.3.1 WDR mode backlight scene face brightness enhancement tuning method

The backlight scene in WDR mode is set to include a large area of light and dark areas in the image, as well as the face in the backlight, as shown in Fig. 4.7. Tuning methods to improve image quality for face brightness in backlit scenes focus on the following dimensions:

Fig. 4.7: Scene of face in backlight

4.3.2 Brightness Dimension

The brightness tuning method of WDR mode is consistent with that of linear mode as a whole. Please refer to the brightness dimension subsection of 4.1.1 "Image Quality Tuning in Linear Mode" for detailed tuning methods, but the main difference is that the exposure time of long and short frames is determined by the adjustment of AE. In addition, the exposure ratio of AE needs to be adjusted adaptively in different scenes to determine the dynamic range of WDR mode images.

4.3.3 Motion Trailing Dimension of Composite Zone

AE exposure ratio and WDR module are the main factors that affect the motion trailing of the composite area in the image. The larger the AE exposure ratio, the more likely to cause motion trailing. In typical backlight scenarios, AE exposure ratio in WDR 2-in-1 mode is 4-32 times higher than usual, in which case the WDR module is the main cause of motion trailing in the composite zone. Therefore, in the process of tuning WDR, the occurrence of motion trailing can be reduced by tuning long and short frame fusion curves and adjusting motion detection parameters. Please refer to 5.9 "WDR Tuning Method" for detailed tuning methods for WDR.

4.3.4 Dynamic Range Dimension of Scene

AE exposure ratio, DRC and Gamma modules are the main factors that affect the dynamic range of the scene. The tone mapping curve of DRC is often iteratively optimized with Gamma for the actual wide dynamic scene, adjusting the Gamma curve to increase the brightness of the backlit face in the image, while dimming the dark area to maintain its overall contrast. Next, tune the Asymmetry curve of DRC to improve the brightness of backlight face. For the specific tuning methods of DRC, please refer to 5.10.1 "DRC".

4.3.5 Color Dimension

SOPIIGO 算能科技

The method of color tuning in WDR mode is consistent with that in linear mode. Please refer to the color dimension subsection of 4.1.1 "Image Quality Tuning in Linear Mode" for detailed tuning methods.

4.3.6 Contrast Dimension

The contrast tuning methods of WDR mode are mainly DRC and Gamma, supplemented by Dehaze, DCI and LDCI, but the effect of DRC on the overall image contrast as well as the local contrast needs to be considered to adjust the brightness of the backlit faces in the image. Then, DCI and Dehaze are tuned to compensate for the lost contrast, and finally LDCI is used to enhance the local contrast.

4.3.7 Sharpness and noise dimensions

The sharpness and noise tuning methods of WDR mode is consistent with that of linear mode as a whole. Please refer to the sharpness and noise dimension subsection of 4.1.1 "Image Quality Tuning in Linear Mode". The motion area of the image in WDR mode will tend to use long frames to reduce noise. In addition, the 3DNR and YNR parameters can be tuned together with WDR to remove the noise due to the short frames in the motion area. The steps can be described in 5.18.1 "3DNR Tuning Method" and 5.19.1 "YNR Tuning Method".

4.3.8 Tuning Method of Intense Light Suppression Scene at Night in WDR Mode

The key application of night strong light suppression in WDR mode refers to the traffic scene at night, such as a traffic intersection or gate, etc. Fig. 4.8 shows the scene schematic diagram in the general parking lot license plate recognition application.

Fig. 4.8: Scene of intense light at night

Relative to backlight scenarios, the dimensions of the methods of tuning traffic scenes with night intensity suppression are as follows:

4.3.9 Brightness Dimension

The brightness tuning method of WDR mode in the night intense light suppression scene is the same as that of the backlight scene, please refer to the description of the brightness dimension of the backlight scene above for details.

However, the main difference is the effect of AE on car light halo and the effect of AE exposure time on object motion blurring.

Usually, the inside of the headlight is an overexposed area, WDR will choose short frames, while the outer halo of the headlight WDR will choose a fusion of long and short frames.

Therefore, the recommended tuning method is to configure the AE weighting table in such a way that the weighting value in the center near the headlights need to be larger than the area around the picture.

Then tune the AE target value to avoid the short frame of headlight being too dizzy.

Next, the AE Route settings limit the exposure time and use gain first to avoid motion blurring of the license plate.

4.3.10 Motion Trailing Dimension of Composite Area

The method to tune the motion trailing of the composite area for night intense light suppression in WDR mode is similar to backlight scenarios. Please refer to the above description of backlight scenarios to tune the motion trailing of the composite area.

4.3.11 Dynamic Range Dimension of Scene

The specific tuning method for the dynamic range of night intensity suppression scene in WDR mode is similar to backlight scene, please refer to the description of dynamic range of backlight scene above for tuning. It is important to note that AE exposure is about 8-16 times higher than usual at night.

4.3.12 Color Dimension

SOPIIGO 算能科技

The color tuning method for night intensity suppression in WDR mode is similar to backlight scenes. Therefore, you can refer to the description of the color dimension in the backlight scene above for tuning.

4.3.13 Contrast Dimension

Contrast tuning of intense light suppression in WDR mode is similar to backlight scenes. Please refer to the description of contrast dimension of backlight scenes above for tuning. It should be noted here that DCI tuning should be avoided to make the car light halo larger, or that the adjustment of Gamma curve will make the dark area noise greater. Therefore, there is a compromise between the halo size of the car light and the dark area noise and contrast.

4.3.14 Sharpness and noise dimensions

The sharpness and noise tuning methods of intense light suppression in WDR mode are similar to backlight scenes. Please refer to the description of contrast dimension of backlight scenes above for tuning. It is important to note that the 3DNR and YNR are tuned appropriately to balance the noise and trailing in the moving area so as to avoid affecting the license plate recognition.

5 Module Function

5.1 Black Level

5.1.1 Black Level Calibration Method

When the analog signal is very weak, it may not be conveyed by the analog-to-digital converter, resulting in the loss of image details when the light is very dark. Therefore, the image sensor will give the analog signal a fixed offset before the analog-to-digital conversion, ensuring that the output digital signal retains more image details. The black level correction module determines the specific value of this offset by means of calibration. Subsequent ISP processing modules need to reduce the offset value to ensure the linear consistency of the data.

5.1.1.1 Environment and Related Equipments Preparation

If the black level parameters of the image sensor are not obtained beforehand or more accurate black level values are needed, the calibration tool also provides a mode for automatically calibrating the black level. Before calibration, the user needs to manually collect Raw as input for black level calibration. The collection steps are as follows:

Step 1. Close the device's aperture completely or use the lens cover to block the lens input to ensure that no light enters.

Step 2. Manually set the gain to 1x using the ExposureAttr tag of CviPQTool. Set all OpTypes in the Exposure and Exposure Manual check boxes to OP_TYPE_MANUAL, and manually set AGain, DGain, ISP Dgain in the Exposure Manual check box to 1024.

Step 3. Capture a Raw file using the CviPQTool Capture Tool.

5.1.1.2 Black Level Calibration Tool Interface

Switch the main function volume label page of the calibration tool to BLC, and you will see the interface of BLC calibration. As shown in Fig. 5.1, the page is divided into two main parts:

- Control area: The main function of the tool for calibration (red box selection area).
- Display area: Display input image and result image after BLC calibration (blue box selection area).

Interface diagram of black level calibration tool

Name Scene Sal	BLC LSC AWB COM New Polito					1.64
	Import solution pass	Supri Output				
	Calibration Write Calibration Data	Zoon la	Zorn unt 100%	= 1.0br	Sere	Cole Heragne
	Teget for wakage 350 300 🗸					
	Write oxidention data					
	Export calibration data	1 (1) (1)				
				n i ga na b		

Fig. 5.1: Interface diagram of black level calibration tool

5.1.1.3 Black Level Calibration Step

After collecting the Raw required for the calibration algorithm, the user can calibrate the automatic mode of black level according to the following methods:

Step 1. Import the Raw file in Open raw files at the top left of the calibration tool, then use Dark frame in the drop-down menu.

Step 2. Click the Calibration button to calibrate the black level.

5.2 DPC

5.2.1 DPC Tuning Method

5.2.1.1 Functional Description

In sensor manufacturing, depending on the process yield, there will be a varying number of defective pixels.

Interpolation (Demosaic) or filter processing on the image will spread the defective pixels to the surrounding pixels.

In order to reduce the damage of defective pixels to the original pixels, the defective pixels must be corrected before image processing such as interpolation.

Defective pixels can be divided into two types:

- Static defective pixels :
- Bright point: Usually the pixel value is directly proportional to the brightness of the incident light source. A bright point is defined as a point whose value is much larger than that of the incident light multiplied by the corresponding ratio, and the value of this point increases significantly as the exposure time increases.
- Dark point: The pixel value at this point is very close to 0 regardless of the characteristics of the original light source.
- Dynamic defective pixels:

In normal usage, the pixel value at this point is normal, but it will appear brighter than the surrounding pixels due to different environmental conditions such as usage time or sensor temperature rise and gain increase.

Detection and correction of static and dynamic defective pixels mainly use 5x5 window to determine and correct the same color channel.

The types of defective pixels DPC can support:

- Single defective pixel
- Defective pixels aggregation, with up to three adjacent defective pixels per color channel

Fig. 5.2: A single defective pixel, as shown below is the R defective pixel

X	\times	
X	X	

Fig. 5.3: There are two defective pixels in the same color channel, G has two consecutive defective pixels, and R, B defective pixels will not affect the correction of G.

Fig. 5.4: Three defective pixels in the same color channel

DPC unsupported defective pixels type:

• Aggregation of more than three defective pixels in the same color channel

5.2.1.2 Key Parameters

The DPC correction flowchart is shown in Fig. 5.5, and the static and dynamic key parameters are shown in Table 5.1 and Table 5.2, respectively.

Table 5.1:	DPC	Static	Key	Parameters
------------	-----	--------	-----	------------

Parameters	Value range	Default value	Description
Enable	[0, 1]	0	Enable the static defective pixel
			DPC function.
			0: close
			1: enable

Parameters	Value range	Default	Description				
		value					
Enable	[0, 1]	0	Enable DPC function.				
			0: Close.				
			1: Enable.				
DynamicDPCEnable	[0, 1]	0	Enable the dynamic defective pixel				
			DPC function.				
			0: close				
			1: enable				
OpType	[0, 1]	0	DPC operation type.				
			0: Automatic mode				
			(OP TYPE AUTO)				
			1: Manual mode				
			(OP TYPE MANUAL)				
ClusterSize	[0, 3]	2	The upper bound of the cluster defec-				
			tive pixels area, the higher the value.				
			the better the correction of the cluster				
			defective pixels, but may cause the at-				
			tenuation of the resolution in the high				
			frequency region				
BrightDefectToNor-	[1 255]	128	The ratio of the visible bright defective				
malPivBatio	[1, 200]	120	nivels value to the surrounding nivels				
DarkDofectToNor	[1 955]	128	The ratio of the visible dark defective				
malPivRatio	[1, 200]	120	nivels value to the surrounding nivels				
FlatThraD	[0.255]	0	Threshold value of flat area for P				
r lat I lifen	[0, 200]	0	channel discrimination the grapher the				
			channel discrimination, the smaller the				
			value, the more edge information can				
			be retained.				
FlatThreG	[0, 255]	8	Threshold value of flat area for G-				
			channel discrimination, the smaller the				
			value, the more edge information can				
		-	be retained.				
FlatThreB	[0, 255]	8	Threshold value of flat area for B-				
			channel discrimination, the smaller the				
			value, the more edge information can				
			be retained.				
FlatThreMinG	[0, 255]	15	The minimum threshold value of flat				
			area for G-channel discrimination				
FlatThreMinRB	[0, 255]	15	The minimum threshold value of flat				
			area for RB-channel discrimination				

Table 5.2:	DPC Dynami	c Key Parameters
------------	------------	------------------

5.2.1.3 Tuning Steps

Dynamic DPC processing intensity is closely related to ISO value.

The higher the ISO, the noisier the image.

By increasing the intensity of dynamic DPC, better image quality can be obtained.

However, if the intensity is too strong, details will be lost and edges will be blurred.

Therefore, dynamic DPC intensity adjustment must be made for different sensors and different scenarios in tuning. Parameters corresponding to 16 ISO values listed as 4.1.1 are configured in sensor's cmos.c.

When the actual effect is not as expected, the user can tune it according to the following steps:

Step 1. Set BrightDefectToNormalPixRatio, which is twice the average value of the defective pixels in the bright area of the R/G/B pixel and the surrounding pixels.

The default value is 4 times, which is equivalent to correcting defective pixels that are more than 4 times the average value of the surrounding pixels.

The larger the **BrightDefectToNormalPixRatio**, the more accurate the defective pixels judgment condition is.

If there are any remaining defective pixels in the image, the **BrightDefectToNormalPixRatio** can be adjusted lower. Note that if it is adjusted too small, the edge details will be lost.

The **DarkDefectToNormalPixRatio** adjustment is the same as above, which is the ratio of dark area defective pixels to surrounding pixels.

Step 2. The threshold value of flat zone is determined by adjusting the slope FlatThre[R/G/B] and the threshold value of flat zone FlatThreMinG/FlatThreMinRB.

Take the G-channel flat area threshold as an example, as shown in Fig. 5.6, the smaller the **FlatThreMinG** threshold is, the better the edge information of the image can be preserved.

The larger the threshold value of the flat area, the easier it is to judge as the flat area, resulting in loss of details on the more polygonal edges.

--end

Fig. 5.6: Diagram of adjustment of flat zone threshold value of G-channel

5.3 CrossTalk Removal

5.3.1 CrossTalk Removal Tuning Method

5.3.1.1 Function Description

Crosstalk refers to a square or similar pattern produced by a sensor after a Demosaic interpolation operation because the Gr of the neighboring pixels is inconsistent with the Gb value due to a particular angle of incoming light. Therefore, in order to balance the difference between adjacent Gr and Gb.

As shown in Fig. 5.7, the horizontal coordinates represent the difference between Gr and Gb, Diff = | Gr - Gb|, the vertical coordinates represent the corresponding weight values, and T1~T4 is the Threshold value that the user can define. The smaller the difference, the larger the weight value, and the greater the intensity of the overall image processing.

Fig. 5.7: Crosstalk Removal Weight Distribution

5.3.1.2 Key Parameters

Parameters	Value range	Default	Description			
		value				
Enable	[0, 1]	0	Enable Crosstalk Removal fonction.			
			0: Close.			
			1: Enable			
ОрТуре	[0, 1]	0	Crosstalk Removal operation type.			
			0: Automatic mode			
			(OP_TYPE_AUTO)			
			1: Manual mode			
			(OP_TYPE_MANUAL)			
GrGbDiffThreSec1	[0, 4095]	128	G-channel balance node 1 threshold.			
GrGbDiffThreSec2	[0, 4095]	192	G-channel balance node 2 threshold.			
GrGbDiffThreSec3	[0, 4095]	224	G-Channel Balance Node 3 Threshold.			
GrGbDiffThreSec4	[0, 4095]	256	G-Channel Balance Node 4 Threshold.			
FlatThre1	[0, 4095]	128	Flat zone detection node 1 threshold.			
FlatThre2	[0, 4095]	192	Flat zone detection node 2 threshold.			
FlatThre3	[0, 4095]	224	Flat zone detection node 3 threshold.			
FlatThre4	[0, 4095]	256	Flat zone detection node 4 threshold.			
Strength[16]	[0, 255]	64	G-channel balance global strength.			

Table 5.3:	CrossTalk	Removal	key	parameters
			· •/	T

5.3.1.3 Tuning Steps

Fig. 5.8: CrossTalk Removal process flow chart and key parameters

Step 1. By adjusting **GrGbDiffThreSec1** to **GrGbDiffThreSec4**, the greater the value of **GrGbD-iffThreSec1**, the stronger the overall processing intensity. **GrGbDiffThreSec2- GrGbDiffThreSec4** determines how far the difference is from and how much the intensity is weakened.

Step 2. By adjusting **FlatThre1~FlatThre4** to determine the intensity of image edge processing, the higher the value of **FlatThre1**, the stronger the edge will be processed, resulting in blurring. Conversely, the smaller the **FlatThre1**, the clearer the edge will be.

Step 3. Strength represents the overall intensity of the image processing, the higher the value, the stronger the intensity;Conversely, if the value is set too small, the lattice noise of CrossTalk will remain

—-end

5.4 Mesh Lens Shading Correction (MLSC)

5.4.1 MLSC Calibration Method

It is found that in the Lens Shading phenomenon, the attenuation trend of the brightness of the target point conforms to the law of cosine fourth power.

For the same lens module, the image brightness only changes with the imaging angle between the imaging point and the optical axis.

The change trend is that the ratio is directly proportional to the fourth power of the cosine of the imaging angle, and the ratio coefficient is determined by the lens diameter and focal length of the lens.

Therefore, for the same lens module, the calibration results need to meet the following two conditions: First, the calibration results can effectively reflect the brightness decay trend;Second, the calibration results can be used to restore the brightness of all target points in the image area. Therefore, the calibration results of this module need to be stored in a Mesh grid. It is also important to note that even for the same lens module, the Color Shading characteristic curves are different under different light sources or color temperatures due to the different frequency spectra of light sources or different color temperatures and the influence of IR-cut Filter.

Therefore, in order to meet the correction requirements for Color Shading under different light sources or color temperatures, MLSC needs to be corrected at different light sources or color temperatures.

Due to the influence of Color Shading, for some lenses or sensors with more severe Color Shading phenomena, MLSC correction of AWB calibration collection sequence is required before AWB calibration.

In order to get accurate AWB calibration results, the calibration results are used as input of AWB calibration algorithm.

5.4.1.1 Environment and Related Equipments Preparation

For the calibration of MLSC, grayscale images with multiple light sources are prepared as necessary.Explicit collection requirements are as follows:

- The calibration sequence acquisition object of MLSC module must be a light source with flat and even brightness distribution, and the acquisition object must be kept smooth and textureless. Ideally, luminosity box, integrating sphere, DNP lamp box should be used for collection. Other scenarios that can be used as the collection object for MLSC calibration sequence are: lamp box grey inner wall (no obvious scratches or smudges), light source with uniform distribution through ground glass. If the conditions are limited, it can be any gray-scale plane (similar to a white wall) that achieves uniform brightness distribution, but the accuracy of the calibration may be affected.
- If the object of collection is the gray inner wall of the lamp box, it is better to keep the lens pointed at the center of the light source and try to ensure that the light source distribution in the capture area of the lens is flat because there is a certain possibility that the light source of the lamp box is not evenly distributed on the inner wall.
- The acquisition sequence format is RAW format, only needs 1 frame. During the acquisition process, the illumination of the light source is around 400 lux, the brightness of the lens center needs to be kept at 70% of the maximum (255), and the lens that needs to be calibrated is used.
- Scenes that need to be used under different light sources need to be calibrated under different light sources. The commonly used light sources are TL84, CWF, A, D65, D50, etc. Please select a light source to calibrate according to the use requirements.
- Repeated calibration is required for different lens modules

The actual preparation steps are as follows :

Step1. Aim the lens at the target area and keep the environment undisturbed

Step2. Adjust the light source brightness so that the average value of the lens center brightness is 70% of the maximum value.

Step3. Raw data is collected using the CviPQTool Capture Tool with only one frame.

Step4. Replace the light source and repeat the above steps.

--end

The collected MLSC calibration sequence is shown in Fig. 5.9:

Fig. 5.9: MLSC Calibration Sequence Image

5.4.1.2 MLSC Calibration Tool Interface

Switch the main function tab of the ISP calibration tool to MLSC, and you will see the interface of MLSC calibration, as shown in Fig. 5.10.

MLSC calibration tools can be divided into three main parts:

- Control area: The main function of the tool for calibration (red box selection area).
- Display area: Display the input image and the output image (blue box selection) after MLSC calibration.
- List area: The open input images are displayed here and provide the ability to post the calibration results to the board, which is the lower left block of the MLSC tab (green box selection area).

Calibration							- 0 ×
Del Name Scene Sel	Cumutaw config: Size 1900 x 1000, Pieel Asyle 12 hit REC LC AWR CCM Noise Parks	ih, Congonente ROOB, Pa	charted (i)				Bill wordig
	Import talected nov Import Education & the Calibration With validation & the Experimentalization for	lagert Output Zerm la	Zenn ord	1004	- 1.00e	3ave	Color Histogram
	Del Group Name CT Sel	2					
					له		
Jugan Bady							

Fig. 5.10: MLSC Calibration Tool Interface Diagram

5.4.1.3 MLSC Calibration Steps

The general steps for MLSC calibration are as follows:

Select Open raw files in the upper left to import RAW images. The imported files will be displayed on the left, then click the check box in the Sel column to import the selected RAW images by clicking "Import selected raw" in the LSC tab.

Press the button "Calibrate" to calibrate the MLSC.MLSC calibration can support multi-color temperature and up to seven sets of MLSC calibration tables.

5.4.2 MLSC Tuning Method

5.4.2.1 Function Description

LSC is called Lens shading correction, and its main purpose is to correct dark corners. The LSC algorithm in the processor uses a grid method to calibrate the image first, then correct it, dividing the domain image on Bayer into 37×37 sub-blocks. Four channels in Bayer domain are calculated by three different RGB gain arrays. When a MLSC array is calibrated as a complex array, an adjacent MLSC calibration table of two color temperatures is selected based on the current color temperature for interpolation, resulting in a MLSC gain corresponding to the current color temperature. The number of groups to be calibrated is defined by the **LscGainLutSize** parameter.
5.4.2.2 Key Parameters

Parameters	Value range	Default	Description
	[n 1]	value	
Enable	[0, 1]	0	Enable MLSC module:
			0: off;
			1: on.
OpType	[0, 1]	0	MLSC operation type.
			0: Automatic mode
			(OP_TYPE_AUTO)。
			1: Manual mode
			(OP_TYPE_MANUAL).
MeshStr	[0, 4095]	4095	MLSC global strength
LscGainLutSize	[1, 7]	1	Number of calibrated MLSC groups
			that can support up to seven sets of
			calibration data
LscGina-	[500		Color temperature corresponding to
Lut[n].ColorTemp	,30000]		group n calibration data
LscGinaLut[n].RGain	[0, 4095]		R-Channel Gain Table for Group n
			Calibration Data
LscGinaLut[n].GGain	[0, 4095]		G-Channel Gain Table for Group n
	_		Calibration Data
LscGinaLut[n].BGain	[0, 4095]		B-Channel Gain Table for Group n
			Calibration Data

5.4.2.3 Tuning Steps

Before tuning parameters, verify that the modules listed in Table 5.5 have been tuned and that the default values for key parameters are configured according to Table 5.4.

Table 5.5 :	Modules	related	to MLSC	pre-tuning
---------------	---------	---------	---------	------------

Module	Status/Value
BLC	Tuned

The MLSC interfaces are as follows. The MeshShading box aggregates all the MLSC options and completes the tuning steps once the adjustment is complete.

5.5 Radial Shading Correction (RLSC)

5.5.1 RLSC Calibration Methods

Lens shading is due to the different refractive index of the spherical lens, resulting in concentric decay of the received image, the closer to the center of the lens, the less the image brightness decay, and the more away from the center of the lens, the stronger the image brightness decay. Radial Shading Correction provides concentric circle-based dark corner gain to deal with the dark corner phenomenon caused by uneven optical refraction of the lens.

Radial shading correction is only supported for generating image corrections on AE, AWB, AF statistics.

Radial shading correction calibration is the same as MLSC, for the same lens module, the calibration results need to meet the following two conditions: first, the calibration results can effectively reflect the luminance decay trend; second, the calibration results can be used to recover the luminance of all target points in the image area. At the same time, it should be noted that, due to the different spectrum of light under different light sources or color temperatures, and the influence of IR-cut filter, the Color Shading characteristic curve under different light sources is different even for the same lens module, so in order to meet the calibration requirements of Color Shading under different light sources or color temperatures, the RLSC needs to be calibrated under different light sources or color temperatures. Therefore, in order to meet the requirements of color shading correction under different light sources or color temperatures, RLSC needs to be corrected under different light sources or color temperatures.

Due to the effect of Color Shading, for some lenses or sensors with serious Color Shading, the calibration acquisition sequence of AWB needs to be corrected before doing AWB calibration, and the calibration result is used as input to the AWB calibration algorithm to get accurate AWB calibration results.

5.5.1.1 Environment and Related Equipments Preparation

The calibration image of RLSC can be shared with the calibration image of MLSC. Grayscale images of multiple light sources are necessary for pre-preparation. The explicit acquisition requirements are as follows:

- The calibration sequence acquisition object of RLSC module must be a light source with flat and even brightness distribution, and the acquisition object must be kept smooth and textureless. Ideally, luminosity box, integrating sphere, DNP lamp box should be used for collection. Other scenarios that can be used as the collection object for RLSC calibration sequence are: lamp box grey inner wall (no obvious scratches or smudges), light source with uniform distribution through ground glass. If the conditions are limited, it can be any gray-scale plane (similar to a white wall) that achieves uniform brightness distribution, but the accuracy of the calibration may be affected.
- If the object of collection is the gray inner wall of the lamp box, it is better to keep the lens pointed at the center of the light source and try to ensure that the light source distribution in the capture area of the lens is flat because there is a certain possibility that the light source of the lamp box is not evenly distributed on the inner wall.

- The acquisition sequence format is RAW format, only needs 1 frame. During the acquisition process, the illumination of the light source is around 400 lux, the brightness of the lens center needs to be kept at 70% of the maximum (255), and the lens that needs to be calibrated is used.
- Scenes that need to be used under different light sources need to be calibrated under different light sources. The commonly used light sources are TL84, CWF, A, D65, D50, etc. Please select a light source to calibrate according to the use requirements.
- Repeated calibration is required for different lens modules

The actual preparation steps are as follows :

Step1. Aim the lens at the target area and keep the environment undisturbed

Step2. Adjust the light source brightness so that the average value of the lens center brightness is 70% of the maximum value.

Step3. Raw data is collected using the CviPQTool Capture Tool with only one frame.

Step4. Replace the light source and repeat the above steps.

--end

The collected RLSC calibration sequence is shown in Fig. 5.11:

Fig. 5.11: RLSC Calibration Sequence Image

5.5.1.2 RLSC Calibration Tool Interface

The interface for RLSC calibration is common to the MLSC calibration interface, as shown in Fig. 5.10.

RLSC calibration tools can be divided into three main parts:

- Control area: The main function of the tool for calibration (red box selection area).
- Display area: Display the input image and the output image (blue box selection) after RLSC calibration.
- List area: The open input images are displayed here and provide the ability to post the calibration results to the board, which is the lower left block of the LSC tab (green box selection area).

5.5.1.3 RLSC Calibration Steps

The general steps for RLSC calibration are as follows:

Select Open raw files in the upper left to import RAW images. The imported files will be displayed on the left, then click the check box in the Sel column to import the selected RAW images by clicking "Import selected raw" in the LSC tab.

Press the button "Calibrate" to calibrate the RLSC. RLSC calibration can support multi-color temperature and up to seven sets of RLSC calibration tables.

5.5.2 RLSC Tuning Method

5.5.2.1 Function Description

Radial Lens Shading principle is to process the pixels with reference to the coordinates of the surrounding pixels at the center of the lens, so it can be used to make up for the lack of concentric circle-shaped luminance decay of the lens.

5.5.2.2 Key Parameters

Parameters	Value range	Default	Description
		value	
Enable	[0, 1]	0	Enable RLSC module:
			0: off;
			1: on.
RadiusStr	[0, 4095]	0	LSC Compensation Strength
RadiusIRStr	[0, 4095]	0	LSC IR Compensation Strength
Size	[1,7]	0	Number of color temperature adaptive
			LSC compensation gain table
ColorTemperature[7]	[0, 65535]	0	Color temperature adaptive LSC com-
			pensation gain table corresponding to
			the color temperature
RadiusShadingR-	[0, 4095]	512	LSC Radius form red compensation
Gain[7][32]			gain table
RadiusShad-	[0, 4095]	512	LSC Radius form green compensation
ingGGain[7][32]			gain table
RadiusShadingB-	[0, 4095]	512	LSC Radius form blue compensation
Gain[7][32]			gain table
RadiusShadingIR-	[0, 4095]	512	LSC Radius form IR compensation
Gain[7][32]			gain table

Table 5.6 :	RLSC	Key	Parameters
---------------	------	-----	------------

5.5.2.3 Tuning Steps

Before tuning parameters, verify that the modules listed in Table 5.7 have been tuned and that the default values for key parameters are configured according to Table 5.6.

Table 5.7: Modules related to RLSC pre-tuning

Module	Status/Value
BLC	Tuned

The RLSC interfaces are as follows. The MeshShading box aggregates all the RLSC options and completes the tuning steps once the adjustment is complete.

5.6 White Balance

5.6.1 AWB Calibration Method

Based on the white point characteristics (R/G, B/G) of sensor under several standard light sources, the best Planck color temperature fitting curve is calculated.

5.6.1.1 Environment and Related Equipments Preparation

Lens and Sensors that need to be calibrated, standard 18% reflective gray card (as shown in Fig. 5.12).

Fig. 5.12: Standard 18% Reflective Gray Card

Step1. Under the illumination of 600 lux (the left and right light sources should be even, and the angle between the light source and the color card should be 25°-45°). In choosing the type of light source, please try to satisfy the high color temperature, medium color temperature and low color temperature in at least one group.Recommended use of D65 (6500K) or D75 (7500K), TL84 (4000K) and A (2800K) light sources

Step2. When collecting Raw, try to make the gray card picture occupy more than 70% of the picture content, and confirm that the brightness of Raw is as expected, and the G component brightness is about 0.36 times the saturated value (if 12 bits raw, it is recommended that G value be between 1274 and 1674). Only one frame can be collected, and the actual ambient color temperature needs to be recorded when collecting Raw.

Step3. Since lens shading can affect the result of AWB calibration, in order to ensure the accuracy of AWB calibration results, the collected Raws are Shading calibrated before AWB calibration.

---end

5.6.1.2 AWB Calibration Tool Interface

Switch the main function volume label page of the calibration tool to AWB, and you will see the interface of AWB calibration, as shown in Fig. 5.13.

Fig. 5.13: AWB calibration tool interface diagram

5.6.1.3 AWB Calibration Steps

Step1. Import BLC Data, the correct BLC value is required to calibrate the AWB.

Step2. Click "Open raw file" to open and select the raw file you want to calibrate, and select uniform color for the Raw Scene option. Please select the correct RAW Format to avoid calibrating the wrong AWB color temperature curve.

Step3. Check the raw file you want to label and click "Import select raw" to import it.

Step4. Repeat steps 2~3, with at least three color temperature RAW files.

Step5. Enter the color temperature (In Temp.(K)) of each RAW file in the green box area.

Step6. Check 3 KI (Key Color Temperature) in the green box area.

Step7. Click on "Calibration" to perform AWB calibration.

Step8. The blue box will show the calibrated WB curves, which can be adjusted using Weight weights.

Step9. After confirmation, press "Write Data" to write the AWB calibration data.

Step10. Click "Export Data" to export the AWB calibration file.

Step11. Note, please confirm that the higher the color temperature, the lower the value of R/G and the higher the value of B/G. If not, please reconfirm whether the RAW shooting and format are correct.

Can be confirmed by AWB Calibration Data on the WB Attr page.

Table 5.6. AWD Calibration Data				
Parameters	Value range	Default	Description	
		value		
ColorTemp[0~2]	[0, 30000]	0	Three sets of color temperatures (low	
			to high) calibrated by AWB	
AvgRgain[0~2]	[0, 4095]	0	Rgain calibrated by AWB	

 Table 5.8: AWB Calibration Data

5.6.2 AWB Tuning Method

5.6.2.1 Function Description

The same object will show different colors when illuminated by different light sources. Under low color temperature light source, the white object is reddish, while under high color temperature light source, the white object is blue. The human eye can recognize the true color of an object based on the memory of the brain. The function of the AWB algorithm is to restore white to its original color without the influence of the light source in the field. The basic principle of AWB algorithm is to calculate the gain of R, G, B color channels based on the color information of gray objects in the scene, multiply the gain of R and B channels, and make the RGB channels balance. The gain of AWB is global, so the RGB three-channel balance for all gray areas cannot be achieved in a scenario with multiple light sources.

5.6.2.2 Key Parameters

Parameters	Value range	Default	Description
		value	
Bypass	[0, 1]	0	When ByPass is true, the
			other parameters of WB are
			not valid and the RGB chan-
			nel gain factor is fixed to 1024
			(double gain).
OpType	[0, 1]	0	Manual white balance and au-
			tomatic white balance mode
			switch.
AlgType	[0, 1]	0	AWB algorithm category
			0:AWB, 1:AWB_SPEC
AWBRunInterval	[1, 255]	6	The working frequency of
			white balance module, the
			preset value of 6 is recom-
			mended to avoid too much
			computation.
RGain	[1, 16383]	1024	Manual white balance mode
			R channel gain factor, dou-
			bling gain is 1024.

Table 5.9: AWB Key Parameters

			r-0-
Parameters	Value range	Default	Description
		value	
GGain	[1, 16383]	1024	Manual white balance mode
			G channel gain factor, dou-
			bling gain is 1024.
BGain	[1 16383]	1024	Manual white balance mode
DGain		1021	B channel gain factor dou-
			bling gain is 1024
Enchlo	[0, 1]	1	To anable automatic white
Enable			lo enable automatic white
T 46 1 T			balance mode.
RefColorTemp	[0, 65535]	5000	The static white balance fac-
			tor given by the AWB calibra-
			tion tool.
Static WB	[0, 4096]	1024	The static white balance fac-
			tor given by the AWB calibra-
			tion tool.
CurvePara	$[-214\ 7483648,\ 214\ 7483647]$	1	CurvePara [0-2] Planck curve
			coefficients, given by the
			AWB calibration tool Planck
			curves depict the color rep-
			recentation of white blocks
			at standard light sources
			at standard light sources
			at different color tempera-
			tures.CurvePara [3-5] color
			temperature curve coefficient,
			given by AWB calibration
			tool.Color temperature
			curves depict the relationship
			between the color representa-
			tion of white blocks and color
			temperature.
AWB.AlgTvpe	[0, 1]	1	AWB algorithm
0-Jr~	L / J		category selec-
			tion 0:AWB ALG LOWCOST
			1.AWB ALC ADVANCE
			When using
			AWB_ALG_LOWCOST,
			the functionality of the
			AWBAttrEx page will not
			work.

Table	5.9 –	continued	from	previous	page	
-------	-------	-----------	------	----------	------	--

Parameters	Value range	Default	Description
		value	
RGStrength	[0, 255]	128	AWB correction intensity, ad-
BGStrength			justment is not recommended
			in general.RGStrength =
			BGStrength is recommended
			and set to $\leq =0x80$.
			When RGStrength=0x80, the
			white color returns to white.
			When RGStrength $> 0x80$,
			white is opposite to light
			source, low color temperature
			is blue, high color tempera-
			ture is red;
			New tuning mode
			(BGStrength=0 to enter
			this mode):
			When RGStrength $= 0x80$,
			no adjustment;
			When RGStrength $< 0x80$
			and tends to 0, it becomes
			more and more warm-toned;
			When RGStrength>0x80 and
			tends to 255, it becomes more
			and more cool-toned
Speed	[0, 4095]	256	AWB convergence speed, the
			larger the value, the faster
			the AWB convergence, the
			greater the fluctuation ampli-
			tude per frame, the smaller
			the value, the slower the AWB
			convergence speed and the
			higher the picture stability
			when switching light source.
ZoneSel	[0, 255]	32	When the parameter is 0 or
			255, a white balance algo-
			rithm approximating the gray
			world is used, while the other
			values are used for classifica-
			tion filtering to improve accu-
			racy.

Table 5.9 – continued from previous page	Table	5.9 -	continued	from	previous	page
--	-------	-------	-----------	------	----------	------

Parameters	Value range	Default	Description
		value	
HighColorTemp	[0, 65535]	8000	The upper limit of color tem-
			perature supported by AWB,
			the recommended value is
			[8000, 15000].
			The larger the upper color
			temperature limit, the greater
			the interference of blue ob-
			jects on AWB.
LowColorTemp	[0, 65535]	2500	Lower color temperature limit
			supported by AWB, recom-
			mended at $[1500, 2500]$.
			The smaller the lower color
			temperature limit, the greater
			the interference of orange and
			red objects on AWB.
CTLimit.Enable	[0, 1]	1	White balance gain range
			limit switch.
CTLimit.OpType	[0, 1]	0	Set the gain range of white
			balance automatically or
		2500	manually.
CTLimit.HighRgLii	mitu, 16383]	2500	Maximum R gain at high
			color temperature in manual
	·[0_10000]	510	mode.
CTLimit.HighBgLii	mitu, 16383]	512	Minimum B gain at high color
	·/0_10000]	F10	temperature in manual mode.
CTLimit.LowRgLin	aitu, 16383]	512	Minimum R gain at low color
		4000	temperature in manual mode.
CTLimit.LowBgLin	nt[0, 16383]	4096	Maximum B gain at low color
		1	temperature in manual mode.
ShiftLimitEn			Switch on which the gain of
			AWB exceeds the white-like
			Point range maps back to the
			white-point range.

Table 5.9 – continued from previous page

Parameters	Value range	Default	Description
		value	
ShiftLimit	[0, 4095]	240	The white area range sup- ported by AWB is determined with Planck curve as the cen- ter point, ShiftLimit as the top and bottom band. ShiftLimit[0] and ShiftLimit[1] are the lower and upper band widths of the white area of 1500 ~ 4000K ShiftLimit[2] and ShiftLimit[3] are the lower and upper band widths of the white area of 4001 ~ 4800K ShiftLimit[4] and ShiftLimit[5] are the lower and upper band widths of the white area of 4801 ~ 6000K ShiftLimit[6] and ShiftLimit[6] and ShiftLimit[7] are the lower and upper band widths of the white area of 6001 ~ 15000K Depending on the different high and low color temper- ature lamp sources, different sizes of bands can be set. The larger the value, the wider the bands in white area, and the wider the support for special light sources, which will affect the AWB accuracy in specific
GainNormEn	[0, 1]	1	Restricting the gain of RGB channels can improve the signal-to-noise ratio of low color temperature and low il- lumination scenes and turn it on by default.
NaturalCastEn	[0, 1]	0	AWB style preference switch at low color temperature, light source color will be re- tained at low color tempera- ture.Preset off.
CbCrTrack.Enable	$\left \begin{array}{c} [0,1] \end{array}\right $	0	Linking parameters between AWB statistical range and ISO.

Table	5.9 -	continued	from	previous	page
Table	5.5	continucu	nom	previous	page

	14516 0.5 00	nundea noin previous	P465
Parameters	Value range	Default	Description
		value	
CbCrTrack.CrMax	[0, 16383]	1100	Maximum R/G at different ISOs.
CbCrTrack.CrMin	[0, 16383]	400	Minimum R/G under differ- ent ISOs.
CbCr-	[0_16383]	750	Maximum B/G under differ-
Track.CbMax			ent ISOs.
CbCrTrack.CbMin	[0, 16383]	256	Minimum B/G under different ISOs.
LumaHist.Enable	[0, 1]	1	Whether different brightness turns on weight or not, preset turns on.
LumaHist.OpType	[0, 1]	0	Automatic mode:AWB as- signs weights automatically. Manual mode: Users can set brightness classification and weights themselves.
LumaHist.HistThree	[0, 255]	16	Threshold value for bright- ness classification (valid in manual mode). HistThresh[0] is fixed to 0 and HistThresh[5] is fixed to 225. HistTresh[i+1] must be greater than HistTresh[i].
LumaHist.HistWt	[0, 512]	32	Weight for brightness clas- sification (valid in manual mode).
AWBZoneWtEn	[0, 1]	0	Picture area weight switch.It is recommended to turn on the fisheye lens or driving recorder to avoid interference from other surrounding areas.
ZoneWt	[0, 255]	8	32x32 picture weight. The cen- ter range of the picture can be weighted higher depending on the situation.
Tolerance	[0, 255]	2	The deviation range of the AWB adjustment, in which the AWB will not adjust.
ZoneRadius	[0, 255]	16	The size of the AWB statis- tics partition. The smaller the value, the higher the accuracy of the AWB, but it will reduce the stability of the AWB algo- rithm.

Table 5.9 – continued from previous page

Parameters	Value range	Default	Description
		value	
CurveLLimit	[0, 1024]	320	The left boundary of the
			AWB color temperature curve
			(B/G B/G) such as the
			lower left red border of the
			AWB analysis diagram
CurveBLimit	[512 16383]	768	The right boundary of the
		100	AWB color temperature curve
			(B/C, B/C) such as the up-
			per right red border of the
			AWB analysis diagram
ExtraLightEn	[0, 1]	0	Whather to turn on the inde
		0	pendent light source
Light	[0 16383]	1024	P channel gain for gracial
Info WhiteDrain		1024	light source points
Light	[0 16282]	1094	P shappel gain for gracial
Info WhiteDrain		1024	B-channel gain for special
Into. w niteDgain	[0, 4005]	1094	light source points.
Info Exponent	[0, 4093]	1024	brightnass
Info.ExpQuant			Francess.
			ExpQuant is the brightness
			finit value that is turned on,
			F O t C l l
			ExpQuant = 0, means below IVC to one of this WD light
			LV6 to open this WB light
			point (general night scene for $h_{\rm closer}$ $W(c)$
			Delow LV6)
			ExpQuant = 100 means turn
			on above LV6
			ExpQuant = 112 means turn
			on above LV12 (LV12 is gen-
			erally outdoor)
LightInfo.Status	[0, 2]	0	The type of special light
			source point,
			U:No action
			1:Add light source point
			2:Delete the calculation near
			the light source point.
LightInfo.Radius	[0, 255]	8	Area size of the special light
			source point.
InOrOut.Enable	[0, 1]	1	The parameters used by AWB
			to make indoor and outdoor
			judgments on the scene.
InOrOut.OpType	[0, 1]	0	Determine indoors and out-
			doors (automatic or manual).
In-	[0, 1]	0	Indoor or outdoor mode
OrOut.OutdoorStat	tus		(manual mode).

Table	5.9 –	continued	from	previous	page	
-------	-------	-----------	------	----------	------	--

Parameters	Value range	Default	Description
		value	
In-	[0, 20]	14	The threshold value for judg-
OrOut.OutThresh			ing indoor-outdoor, when the
			brightness is less than, it is
			judged as indoor, and outdoor
			LV mostly exceeds 15.
InOrOut.LowStart	[0, 65535]	5000	Pull the weight of low color
			temperature down, and the
			starting point of low color
			temperature zone is suggested
In On Out I and tan		4500	to be 5000K.
morout.Lowstop		4000	Full the weight of low color
			point of low color tempera-
			ture zone is recommended to
			be 4500 K.
In-	[0, 65535]	6500	Pull down the weight of high
OrOut.HighStart			color temperature, the start-
			ing point of high color tem-
			perature zone, 6500K is rec-
			ommended.
InOrOut.HighStop	[0, 65535]	8000	Pull down the weight of high
			color temperature, the end
			point of high color temper-
			ature zone, 8000K is recom-
In		1	mended.
OrOut bGreenEnha	nceEn		additional switch is added to
			the green channel.
In-	[0, 255]	32	The limitation of the white
OrOut.OutShiftLim	lit	-	point range of the AWB algo-
			rithm when judged as outdoor
			scenes.
MultiLight-	[0, 1]	1	AWB detects whether the
SourceEn			current scene is a mixed light
			source to adjust saturation or
			CCM.
MultiLSType		0	Adjust saturation or CCM.
MultiLSScaler	[0, 256]	256	Adjust saturation or inten-
			sity of CCM when mixed light
Mult;CTD:-	[0_65525]	5000	The color terror and ture
MultiC I Bin	[0, 05555]	0000	ne color temperature seg-
			he an increasing sequence
MultiCTWt	[0 1024]	256	Color temperature segment
			weight.

Table	5.9 – con	tinued from	previous	page
-------	-----------	-------------	----------	------

Table 5.9 – continued from previous page					
Parameters	Value range	Default	Description		
		value			
FineTunEn	[0, 1]	1	AWB special color detection		
			switch, such as skin color.		
FineTunStrength	[0, 255]	128	Intensity of special color de-		
			tection such as skin color and		
			blue color.		
stSkin.u8Mode	[0, 1]	0	Skin color detection switch		
stSkin.u16RgainDiff	[0, 65535]	0	Skin color Rgain offset value		
stSkin.u16BgainDiff	[0, 65535]	0	Skin color Bgain offset value		
stSkin.u8Radius	[0, 255]	0	Skin color area size		
stSky.u8Mode	[0, 2]	0	Gray point processing mode		
	0: No special treatment for				
	in-range points				
	1 : Remove the points within				
	the selected range, i.e., they				
	are not included in the calcu-				
	lation				
	2: Map Rgain and Bgain in				
	the Radius range of the base				
	point as MapRgain and Map-				
	Bgain				
stSky.u8ThrLv	[0, 255]	0	Brightness threshold, the		
			point to be processed should		
			be greater than the current		
			Lv		
stSky.u16Rgain	[0, 65535]	0	The base point R gain of the		
			point to be processed		
stSky.u16Bgain	[0, 65535]	0	The base point B gain of the		
			point to be processed		
stSky.u16MapRgain	[0, 65535]	0	Points within the Radius		
			range of the base point R gain		
			are mapped to the current		
			Rgain		
stSky.u16MapBgain	[0, 65535]	0	Points within the Radius		
			range of the base point B gain		
			are mapped to the current		
			Bgain		
stSky.u8Radius	$[0, \overline{255}]$	0	The size of the region with R		
			gain, B gain as the base point		
stCtLv.bEnable	[0, 1]	0	Switch for calculating color		
			temperature weights based on		
			luminance		

Table 5.9 – continued from previous pag	Table	5.9 -	continued	from	previous	page
---	-------	-------	-----------	------	----------	------

			Pa80
Parameters	Value range	Default	Description
		value	
stCtLv.au16MultiC	TBi n65535]	2300,	Color temperature segmenta-
		2800.	tion parameter, which must
		3500	be an incremental sequence
		1000,	be an incremental sequence
		4800,	
		5500,	
		6300,	
		7000,	
		8500	
stCtLv.s8ThrLv	[-128, 127]	1, 5, 9,	Brightness segmentation
		13	threshold
stCtLy ou16MultiC	T(N+1024]	64 256	Color tomporature segmenta
Stothy.automutic		04, 200, 05c	tion mainte
		250,	tion weights
		256,	
		256,	
		512,	
		512,	
		256	
stShiftLy u8LowLyN		1	Low-light scene adjustment
		1	offoative range gwitch
		1 100	
stShiftLv.u16LowLv	[QU'x0,0xff] 0xff for full area ad-	1, 192	Region for adjusting the area
	justment		of the effective range from the
	1: Area below the low color		calibration line of low bright-
	temperature calibration line		ness
	2: Area above the low color		
	temperature temperature temperature		
	A: Area below the mid-color		
	tomporature 1 calibration line		
	8: Area above the mid-color		
	temperature 1 calibration line		
	16: Area below the mid-color		
	temperature 2 calibration line		
	32: Area above the mid-color		
	temperature 2 calibration line		
	64: Area below the high color		
	tomporature calibration line		
	128. Area above the high color		
	temperature calibration line		
stShiftLv.u16LowLv	[T[Br, 65535]	15, 15	Brightness threshold for the
			effective range of low bright-
			ness adjustment
stShiftLv.u16LowLy	R[0ti65535]	150, 30	Low brightness effective range
	[,]	,	adjustment ratio $(ratio/100)$
at Shift I w OU; ab I	Modal	1	High light gappa adjustment
stonnerv.uonightv	to flow from [a distinct of the scene adjustment
			effective range switch

Table 5.9 – continued from previous page

Description			Description
Parameters	value range	Default	Description
		value	
stShiftLv.u16HighL	vOTx0,0xff] 0xff for full area ad	3, 0	Region for adjusting the area
	justment		of the effective range from the
	1: Area below the low color		calibration line of high bright-
	temperature calibration line		ness
	2: Area above the low color		
	temperature calibration line		
	4: Area below the mid color		
	4. Area below the mid-color		
	competature realization line		
	8. Area above the mid-color		
	temperature I calibration line		
	16: Area below the mid-color		
	temperature 2 calibration line		
	32: Area above the mid-color		
	temperature 2 calibration line		
	64: Area below the high color		
	temperature calibration line		
	128: Area above the high color		
	temperature calibration line		
stShiftLv.u16HighL	v[0hr65535]	15, 15	Brightness threshold for the
		,	effective range of high bright-
			ness adjustment
stShiftLy.u16HighL	vR@at65535]	300.100	High brightness effective
	[-[range adjustment ratio
			(ratio/100)
stBo	[0_65535]	3000	Low Mid1 color tomporature
sine-		3900	regional demonstrian point
gioii.uTonegioiii		4200	Mili Milo I demarcation point
stRe-	[0, 05535]	4300	Mid1, Mid2 color temper-
gion.u16Region2			ature regional demarcation
			point
stRe-	[0, 65535]	6600	Mid2, High color temperature
gion.u16Region3			regional demarcation point
adjBgainMode	[0, 255]	0	Fine-tune the area where the
	1: Low color temperature area		B gain value calculation oint
	4: Mid-color temperature 2		is involved in white balance
	area		Parameters:
	8: High color temperature		
	area		

Tuble 5.5 continued from previous puge	Table	5.9 –	continued	from	previous	page
--	-------	-------	-----------	------	----------	------

Current AWB information can be found on the WB Info page

Parameters	Value range	Default value	Description
Rgain	[0, 16383]	0	R Channel Gain Factor of AWB
			Current Frame
Ggain	[0, 16383]	0	G Channel Gain Factor of AWB
			Current Frame
Bgain	[0, 16383]	0	B-channel gain coefficient of AWB
			current frame
ColorTemp	[0, 65535]	0	AWB evaluates the color tempera-
			ture of the current environment

5.6.2.3 Tuning Steps

After the calibration, test the AWB accuracy under the standard light source to confirm whether the image color is correct. In case of color deviation, it is necessary to check whether the following parameter configuration is reasonable.

Step1. Check whether the color temperature is within the range of [LowColorTemp, HighColorTemp]. If not, adjust the upper and lower limits of the color temperature.

Step2. Open the AWB analysis interface of Tuning Tools (Extra Utilities->3A Analyser ->AWB), observe whether the white point is in the white area defined by the current parameter, if not, adjust the parameter ShiftLimit, expand the white area and summarize it.

	Low_Down	Low_Up	Mid1_Down	Mid1_Up	Mid2_Down	Mid2_Up	High_Down	High_Up
1	640	640	240	240	640	240	360	240

In the AWB analysis diagram, the two green lines are the range of the current AWB color temperature curve, the AWB color temperature curve (generated by automatic calibration) is in the middle of the green line, and the two red boxes at the bottom left and top right are CurveLLimit, CurveRLimit. The blue dot is the R/G, B/G of each partition when the AWB screen is divided into 32x32. Most of the blue dots fall within the range of the two green color temperature curves under the standard calibration light source.

CHAPTER 5. MODULE FUNCTION

SOPI+GO 算能科技

ISP Tuning Guide

Step3. If the lens has serious two-color problem or special application, user can turn on AWB-ZoneWtEn weight and fill in the corresponding weight.

Step4. If a special light source needs to be added or excluded, turn on the ExtraLightEn and there are four groups of light sources that can be set. After setting the relative Rgain, Bgain and Radius, Staus (when it is set to 1, this light source point will be added to improve the AWB under this light source. When it is set to 2, this light source will be deleted to reduce the interference of blue sky and skin color, for example.) the added or excluded circle can be seen in the AWB analysis chart.

Step5. Outdoor color temperature weight parameter requirements: four parameters range requirements: LowStop < LowStart < HighStart < HighStop. The following figure is an example

LowStop is 3800K, LowStart is 5000K, HighStart is 6200k, HighStop is 7200k, the general weight is 32, and the maximum weight of outdoor color temperature is 256

Step6. In mixed light scene, if you want to use color temperature weight to improve AWB without adjusting saturation or CCM, you can turn on MultiLightSourceEn, select SAT for MultiLSType, and set MultiLSScaler to 256.

Step7. When FineTunEn is turned on, AWB will automatically detect skin color and other special colors, improve AWB performance in skin color scene, and improve AWB accuracy. However, misjudgment may occur under low color temperature light source, resulting in slight yellowing of the image. FineTunStrength adjusts the intensity of skin color detection. The larger the value, the better the AWB performance of skin color scene, but the more obvious the side effects of misjudgment. The default value of 128 is recommended

—-end

5.7 BNR

5.7.1 BNR Calibration Method

BNR (Bayer-domain Noise Reduction) can suppress noise in Bayer domain.

5.7.1.1 Environment and Related Equipment Preparation

1. Prepare the 24 color card for calibration, as shown in Fig. 5.14, as well as the calibrated lens, Sensor and light box set as D65 light source.

Fig. 5.14: Standard 24 color card

- 1. Place the color card in the light box. The illuminance of the light box should be set at 400 Lux. The illuminance must be uniform. After fixing the lens, adjust the distance between the lens and the 24 color card until the area covered by the color card is about 1 / 2 of the screen.
- 2. Under the same ISO, take about $20 \sim 30$ frames of raw and store them in the same folder.
- 3. Adjust the aperture of the lens to the maximum, and then the user setting to measure ISO value. By adjusting the exposure time, the brightness of Block 19 at the bottom left of the 24 color card reaches 80% of the maximum value (if the image bit width is 12 bits, the brightness of Block 19 is about 3276).
- 4. Repeat Step 3-4 until all the required ISO ranges are obtained.

Note:

• During the whole shooting process, please do not touch the color card and lens or walk around the shooting scene, so as to avoid the influence of light and shadow, resulting in uneven light and other problems.

5.7.1.2 BNR Calibration Tool Interface

After image acquisition, switch the main function tab of ISP calibration tool to BNR, and you can see the BNR calibration interface, as shown in Fig. 5.15.

BNR calibration tools can be categorized into two parts:

- Control area: the main functions when performing BNR calibration (red box area).
- Display area: display the input image (blue box area).

BLC LSC AWB COM Noise Purile				
Import selected year	Saperi Osapat			
Inpart SLC collination data	Zoon la	Zorn att 100%	- 1.0bx	Sea Colic Henges
Bdg HOGs				
B0x 800 w				
Calibration.				
Export addression data				
Det Group Iso Frances Set				

Fig. 5.15: BNR Calibration tool interface

5.7.1.3 BNR Calibration Steps

Step 1. On the Open raw files at the top left of the calibration tool, select the raw file of 24 color card, and then use 24 Colors in the drop-down menu.

Step 2. Click and import raw image of 24 color card.

Step 3. Select 24 color blocks of 24 color cards.

Step 4. Click the BLC calibration button.

Step 5. Click the LSC calibration button.

Step 6. Click BNR Calibration button to calibrate and obtain BNR calibration results.

5.7.2 BNR Tuning Method

5.7.2.1 Function Description

BNR is mainly used for spatial denoising in Bayer domain. According to different sensors, the denoising model is established. After BNR proper denoising, the final image results look natural, and avoid some common visual defects in the denoising process, such as insect noise and pattern noise. The configuration of key parameters provides flexibility to adjust the intensity of denoising. At the same time of noise suppression, the edge, texture and details of the image are retained, the original noise pattern is not changed, and the random noise is retained to a certain extent, so the signal-to-noise ratio and overall uniformity of the image results can be improved.

5.7.2.2 Key Parameters

Parameter	Value range	Default value	Description
Enable	[0, 1]	0	To enable BNR module.
		-	0: close
			1: enable
OpType	[0, 4]	0	BNR operation type
		-	0: auto type (OP TYPE AUTO)
			1: manual type
			(OP TYPE MANUAL)
WindowType	[0, 11]	11	The local degree of denoising filter.
			The smaller the value is, the more lo-
			calized the action is.
CoringParamEnable	[0, 1]	0	0:NpSlope/NpLumaThr/NpLowOffset
			are determined by the program;
			1: The above three parameters can be
			set manually.
DetailSmoothMode	[0, 1]	1	To enable the de-noising detail smooth-
			ing function.
			0: close
			1: enable
NoiseSuppressStr	[0, 255]	0	Noise suppression intensity. The larger
			the value is, the stronger the intensity
			of bright noise removal is.
FilterType	[0, 255]	0	Denoising filter intensity. The larger
			the value is, the stronger the intensity
			of bright noise removal is.
VarThr	[0, 1023]	512	The threshold of edge detection. The
			larger the value, the less the number of
			judged edges.
NonDirFiltStr	[0, 31]	0	Adjust the denoising intensity in the
			low frequency region. The larger the
			value is, the more noise is removed in
			the low frequency region.
VhDirFiltStr	[0, 31]	0	Adjust the denoising intensity in the
			horizontal and vertical areas. The
			larger the value is, the more noise is
			removed at the horizontal and vertical
			edges.
AaDirFiltStr	[0, 31]	0	Adjust the denoising intensity at the
			diagonal edge. The larger the value is,
			the more noise is removed at the diag-
			onal edge.

Table	5.10:	BNR	key	parameters
-------	-------	-----	-----	------------

Table	5.10 -	continued	from	previous	page

Parameter	Value range	Default	Ilt Description	
		value		
CoringWgtLF	[0, 256]	0	Adjust the random noise intensity in	
			the low frequency region. The larger	
			the value is, the more noise is retained	
			in the low frequency region.	
CoringWgtHF	[0, 256]	0	Adjust the random noise intensity in	
			the high frequency region. The larger	
			the value is, the more noise is retained	
			in the high frequency region.	
TuningMode			Output debug strategy, auxiliary ad-	
			justment parameters.	
			RESULT : BNR image result.	
			EDGE SMOOTH REGION :	
			Flat/edge detection image result.	
NpSlopeB	[0, 1023]	1023	The slope of the Noise profile in the B	
r ··· · r ·			channel.	
NpSlopeGb	[0 1023]	1023	The slope of the Noise profile in the Gb	
1. polopodo	[0, 10-0]	1010	channel.	
NpSlopeGr	[0, 1023]	1023	The slope of the Noise profile in the Gr	
F	[0, _0_0]		channel.	
NpSlopeR	[0, 1023]	1023	The slope of the Noise profile in the R	
- · F ····· F ····	[0, _0_0]		channel.	
NpLumaThrB	[0, 1023]	16	Noise profile luminance threshold in B	
I T T		_	channel.	
NpLumaThrGb	[0, 1023]	16	Noise profile luminance threshold in Gb	
*			channel.	
NpLumaThrGr	[0, 1023]	16	Noise profile luminance threshold in Gr	
			channel.	
NpLumaThrR	[0, 1023]	16	Noise profile luminance threshold in R	
			channel.	
NpLowOffsetB	[0, 1023]	0	The minimum noise level that the	
			Noise profile can allow in the B chan-	
			nel.	
NpLowOffsetGb	[0, 1023]	0	The minimum noise level that the	
			Noise profile can allow in the Gb chan-	
			nel.	
NpLowOffsetGr	[0, 1023]	0	The minimum noise level that the	
			Noise profile can allow in the Gr chan-	
			nel.	
NpLowOffsetR	[0, 1023]	0	The minimum noise level that the	
			Noise profile can allow in the R chan-	
			nel.	
NpHighOffsetB	[0, 1023]	1023	The maximum noise level that the	
			Noise profile can allow in the B chan-	
			nel.	

Parameter	Value range	Default	Description
		value	
NpHighOffsetGb	[0, 1023]	1023	The maximum noise level that the
			Noise profile can allow in the Gb chan-
			nel.
NpHighOffsetGr	[0, 1023]	1023	The maximum noise level that the
			Noise profile can allow in the Gr chan-
			nel.
NpHighOffsetR	[0, 1023]	1023	The maximum noise level that the
			Noise profile can allow in the R chan-
			nel.

Table 5.10 – continued from previous page

5.7.2.3 Tuning Steps

Fig. 5.16: BNR Framework

Before tuning parameters, please confirm that the modules listed in Table 5.11 have been tuned, and the default values of key parameters are configured according to Table 5.10.

Module	Status/Value
BLC	Tuned
DPC	Tuned
CrossTalk Removal	Tuned
AWB	Tuned
Demosaic	Tuned
3DNR	Tuned
Noise Profile	Set

Table	5.11.	BNR	Pre-tuning	related	modules
Table	0.11.	DIM	1 re-tuning	relateu	modules

Step 1. Adjust the brightness noise denoising function. The relevant parameters include noise suppression strength **NoiseSuppressStr**, and denoising filter strength **FilterType**. The parameters will be configured according to different ISO. First, adjust the **NoiseSuppressStr** to increase gradually until the whole image can keep the full details and minimize the noise. Then, increase the **FilterType** appropriately, and cooperate with other denoising modules to tune it.

Tuning principle: as far as possible to maintain the uniformity of the overall image noise, and avoid impact noise, worm noise and pattern noise. For the configuration of parameters **WindowType** and **DetailSmoothMode**, it is recommended to use the default value first.

Step 2. VarThr is controlled to determine the low and high frequency regions of the image, and then NonDirFiltStr and VhDirFiltStr/AaDirFiltStr are adjusted to change the denoising intensity. The larger NonDirFiltStr is, the less noise is in the low frequency region, while the larger VhDirFiltStr/AaDirFiltStr is, the smoother the image edge is.

Tuning principle: it is suggested that **NonDirFiltStr** and **VhDirFilt-Str/AaDirFiltStr** should be set to the same value to denoise the whole image evenly. If the smoothness of image edge meets the requirement, **NonDirFilter** and **VhDirFilt-Str/AaDirFiltStr** are set to 0.

Step 3. According to the low-frequency and high-frequency regions of the image obtained in step 2, the degree of random noise is retained by adjusting the parameters **CoringWgtLF** and **CoringWgtHF** respectively. Appropriately increasing **CoringWgtLF** can improve the worm noise and pattern noise, while appropriately increasing **CoringWgtHF** can increase the sense of detail.

Tuning principle: it is recommended that **CoringWgtLF** and **CoringWgtHF** be set to the same value to make the noise of the whole image evenly distributed. If the noise type mentioned above does not appear in the image, **CoringWgtLF** and **CoringWgtHF** are set to

--End

5.8 Demosaic

5.8.1 Demosaic Tuning Method

5.8.1.1 Function Description

Demosaic is mainly to convert Bayer image into RGB image. Using the relationship between the current pixel and the surrounding pixels, the direction interpolation function can be realized, and the other two missing components are calculated.

5.8.1.2 Key Parameters

Parameter	Value range	Default	Description
		value	
Enable	[0, 1]	1	To enable Demosaic module
			0: close
			1: enable
ОрТуре	[0, 4]	0	Demosaic operation type
			0: auto mode (OP_TYPE_AUTO)
			1: manual mode
			(OP_TYPE_MANUAL)

Table 5.12: Demosaic key parameters

Parameter	Value range	Default	Description
CoarseEdgeThr	[0_4095]	Value 480	Edge coarse tuning detection thresh
Coarsenage i m		400	old. The smaller the value is, the more
			edges are detected. It is recommended
			to use the parameter CoarseStr for tun-
			ing.
CoarseStr	[0, 4095]	128	Edge coarse tuning strength. The
			smaller the value is, the more direc-
			tional the processing is. On the con-
			trary, the more non directional process-
		100	ing.
FineEdgeThr	[0, 4095]	400	Edge fine tuning detection threshold.
			The smaller the value is, the more
			to use the parameter FineStr for tun-
			ing.
FineStr	[0, 4095]	40	Edge fine tuning strength. The smaller
			the value is, the more directional the
			processing is. On the contrary, the
			more non directional processing.
AntiFalseColorEnable	[0, 1]	0	To enable the anti-false color function
			0: close
		255	1: enable
AntiFalseColorStr	[0, 255]	255	Anti-false color Strength, the higher
			the value, the greater the desaturation strongth
SatGainIn[2]	[0_4095]	[200 800]	Defines the horizontal axis of the LUT
		[200, 200]	i.e. the saturation level of the input
			pixels.
SatGainOut[2]	[0, 4095]	$[4 \ 095, 0]$	Defines the vertical axis of the LUT,
			i.e., the anti-false color strength gain.
			The higher the value, the greater the
			anti-false color strength.
ProtectColorEnable	[0, 1]	0	Enables saturation protection for cus-
			tom colors
ProtectColorGainIn[2]	[0, 4095]	[20, 500]	Defines the horizontal axis of the LUT,
			the protected color
ProtectColorGainOut[2]	[0_4095]	[0_4095]	Defines the vertical axis of the LUT
			which is the anti-false color intensity
			gain. The smaller the value, the
			smaller the anti-false color intensity
			and the more similar it is to the input
			pixel.
UserDefineProtectColor1	[0, 4095]	960	To define the protection color 1.
UserDefineProtectColor2	[0, 4095]	560	To define the protection color 2.
UserDefineProtectColor3	[[0, 4095]	960	To define the protection color 3.

Table 5.12 – continued from previous	page
--------------------------------------	------

Parameter	Value range	Default	Description
		value	
EdgeGainIn[2]	[0, 4095]	[150, 200]	Defines the horizontal axis of the LUT,
			i.e. the edge detection level.
EdgeGainOut[2]	[0, 4095]	[0, 4095]	Defines the vertical axis of the LUT,
			i.e., the anti-false color intensity gain.
			The higher the value, the greater the
			anti-false color intensity.
DetailGainIn[2]	[0, 4095]	[10, 150]	Defines the horizontal axis of the LUT.
[[0, _000]	[-0, -00]	i.e. the detail detection level.
DetailGainOut[2]	[1 4095]	[0 4095]	Defines the vertical axis of the LUT
			i.e. the anti-false color intensity gain
			The higher the value, the greater the
			anti falso color intensity
DetailDetectLumeEn	[0, 1]	1	Enable to adjust the detail detection
DetanDetectLumaEn-	[0, 1]	1	Enable to adjust the detail detection
able			intensity function according to the lu-
			minance.
			0: close
			1: enable
DetailDetectLumaStr	[0, 4095]	480	Adjusts the intensity of detail detection
			according to the luminance. It is rec-
			ommended to adjust it together with
			DetailGain.
DetailSmoothEnable	[0, 1]	0	Enables the detail smoothing function.
			0: close
			1: enable
DetailSmoothStr	[0, 255]	0	Detail smoothing strength. The higher
			the value, the greater the smoothing
			strength.
DetailWgtThr	[0, 255]	0	Detail smoothing range threshold. The
			smaller the value, the larger the range
			of detail smoothing effect.
DetailWgtMin	[0. 256]	0	The minimum gain allowed for detail
	[0, 200]	Ŭ	smoothing strength
DotailWatMax	[0, 256]	256	The maximum gain allowed for detail
	[0, 250]	200	smoothing strongth
DetailWatClane	[0, 1094]	256	Detail amosthing strength along. The
DetanwgtStope	[0, 1024]	200	bish on the sector the strength slope. The
			nigher the value, the stronger the detail
		1.00	smootning strength. 64 is 1x gain.
EdgeWgtThr	[0, 255]	160	Edge smoothing range threshold. The
			smaller the value, the larger the range
			of the edge smoothing effect.
EdgeWgtMin	[0, 256]	0	The minimum gain allowed by the edge
			smoothing strength.
EdgeWgtMax	[0, 256]	256	The maximum gain allowed by the edge
			smoothing strength.

Parameter	Value range	Default	Description
		value	
EdgeWgtSlope	[0, 1024]	256	The slope of the edge smoothing
			strength. The higher the value, the
			stronger the edge smoothing. 64 is $1x$
			gain.
DetailSmoothMapTh	[0, 255]	0	Detail smoothing strength mapping
			range threshold. The smaller the
			value, the larger the range of the edge
			smoothing effect.
DetailSmoothMapMin	[0, 256]	0	The minimum value allowed for detail
			smoothing strength mapping.
DetailSmoothMapMax	[0, 256]	256	The maximum value allowed for detail
			smoothing strength mapping.
DetailSmoothMapSlope	[0, 1024]	256	Detail smoothing strength mapping
			slope. The higher the value, the
			stronger the detail smoothing strength.
			64 is 1x gain.

Table 5.12 – continued from previous page

5.8.1.3 Tuning Steps

Before tuning parameters, please confirm that the modules listed in Table 5.13 have been tuned, and the default values of key parameters are configured according to Table 5.12.

Module	Status/Value
BLC	Tuned
DPC	Tuned
CrossTalk Removal	Tuned
AWB	Tuned
BNR	Tuned
3DNR	Tuned
Noise Profile	Set

Table 5.1	3: Demos	aic Pre-tu	ning relat	ed modules
10010 0.1	o. Domood	IC I IC UU		ca moautos

Step 1. Firstly, the coarse edge detection threshold **CoarseEdgeThr** is adjusted to determine the edge range. The smaller the value, the higher the number of **strong edges** is judged. At the same time, the **CoarseStr** value is adjusted appropriately to determine the texture direction of the image and to reduce the zipper effect caused by strong edges doing the wrong direction in order to obtain the initial **strong texture** direction.

Tuning principle: it is recommended to start tuning parameters from the default values of **CoarseEdgeThr** and **CoarseStr**. Under the setting of the default value, evaluate the smoothness and overall clarity of the edge of the image. (It is recommended to adjust by **CoarseStr** before TV10, higher resolution by **FineEdgeThr** to adjust)

Step 2. Then, the edge detection threshold **FineEdgeThr** is adjusted to determine the edge range. The smaller the value is, the more **weak edges** are judged. At the same time, edge fine-tuning strength **FineStr** is tuned to determine the texture directivity of the image to obtain further texture direction confirmation. It is recommended to match Siemens Chart/ISO12233 to observe the correct direction of the high frequency area to assist in the adjustment. If you do not get improvement by adjusting the parameters higher, you need to check whether the **CoarseEdgeThr** is set too small, you can adjust the **CoarseEdgeThr** higher and then observe the effect.

Tuning principle: the same as the adjustment principle in step 1, first use the default value configuration of parameters **FineEdgeThr** and **FineStr** to observe the current image results. Finally, **FineEdgeThr** and **FineStr** are further adjusted according to the demand.

Step 3. The strength of the anti-false color is controlled by the tuning parameter AntiFalseColorStr. Also, adjust SatGainIn[2] and SatGainOut[2] to reduce false colors for low-saturation areas. For high-frequency areas prone to false colors, you can adjust EdgeGainIn[2] and Edge-GainOut[2] to adjust the strength, as well as customize the desired protected colors UserDefine-ProtectColor1~UserDefineProtectColor3 to avoid being removed as false colors, whose strength can be controlled by adjusting ProtectColorGainIn[2] and ProtectColorGainOut[2].

Tuning principle: The parameters related to anti-false color can be started with default values and fine-tuned as needed.

Step 4. Adjust the parameter **DetailSmoothStr** to reduce the false details caused by the sensor sensitivity and noise when Demosaic, which affect the direction judgment, especially in the highly dense line texture area. False detail suppression function can make details more natural. The larger the **DetailSmoothStr** is, the stronger the detail smoothing function is. However, too much increase will lead to the loss of detail. As shown in Fig. 5.17, while smoothing the details, the range and strength of detail preservation are determined by the parameters **DetailWgtThr** and **DetailWgtSlope** respectively, and the upper and lower limits of detail preservation are controlled by **DetailWgtMin** and **DetailWgtMax**. In addition, as shown in Fig. 5.18, the parameters **EdgeWgtThr** and **EdgeWgtSlope** can be adjusted to determine the detail smoothing range and intensity according to the edge strength, and **EdgeWgtMin** and **EdgeWgtMax** can control the upper and lower limits of the smoothing range intensity.

Tuning principle: the default value of **DetailSmoothEnable** is 0, that is, the smoothing function is turned off. Interested users can enable **DetailSmoothEnable** and select **DetailSmoothStr** to tune the smoothing intensity. Other parameters related to the smoothing intensity will be fine tuned by default.

ISP Tuning Guide

Detail is the difference between the horizontal and vertical directions. The larger the detail is, the more obvious the directivity is.

Fig. 5.18: The relationship curve between edge intensity and smoothing intensity EdgeWgt during edge smoothing

---End

5.9 WDR

Note: cv180x does not support this function.

5.9.1 WDR Tuning Method

5.9.1.1 Function Description

Dynamic range refers to the range of brightness difference between the brightest and darkest objects in the scene.

The larger the dynamic range, the richer the brightness levels in the scene.

The dynamic range of real scene is thousands to hundreds of thousands of times of that of image sensor.

Therefore, when using general image sensors to capture high dynamic scenes, we can only choose the low brightness area, which is easy to make the highlight area overexposed and lose the details of the highlight area.

Or, considering the high light area, the low light area is underexposed, and the low light details are difficult to distinguish.

In order to record every detail of high dynamic range scene, it is necessary to use high dynamic range image sensor or multi exposure image synthesis.

However, due to the large area and high price of high dynamic range image sensor, its practicability is limited.

Therefore, the common way of HDR image generation is to use common sensors to obtain several fixed scene images with different exposures, and then use WDR algorithm to synthesize a high dynamic range image.

Fig. 5.19 shows the long exposure picture, the short exposure picture, and the synthesized picture of the two in one WDR.

The short exposure image is used to capture the bright area information in the scene, while the long exposure image is used to capture the dark area information in the scene.

After WDR synthesis, the high dynamic range image is obtained.

(a) Long exposure

(b) Short exposure

(c) High dynamic range image is obtained after WDR synthesis 🖉

Fig. 5.19: Effect picture of two in one WDR

ISP Tuning Guide

5.9.1.2 Key Parameters

Parameters	Value range	Ddefault	Description
		value	
Enable	[0, 1]	0	Enable WDR module;
			0: Disable
			1: Enable
WDRCombineShortThr	[0, 4095]	3900	For the first fusion, the short exposure
			threshold value, above which the im-
			age data will be selected for composing
			WDR images with long exposure data
			only.
WDRCombineLongThr	[0, 4095]	3300	For the first fusion, the long exposure
			threshold value, below which the im-
			age data will be selected for composing
			WDB images with long exposure data
			only
WDBCombineM_	[0 256]	20	The minimum weight value for fusing
inWeight		52	long and short exposure image data at
			the first fusion. The higher the weight
			the first fusion. The higher the weight
			value, the more weight is given to long
			the many mainter is view to show one
			the more weight is given to short expo-
		050	sure.
WDRCombine-	[0, 256]	256	The maximum weight value for fusing
MaxWeight			long and short exposure image data at
			the first fusion. The higher the weight
			value, the more weight is given to long
			exposure during fusion, and vice versa,
			the more weight is given to short expo-
			sure.
MotionCompEnable	[0, 1]	0	To enable WDR motion detection
			mode switch;
			0: close
			1: enable
MergeModeAlpha	[0, 255]	128	the larger the value, the more the pro-
			portion of short frame moving informa-
			tion is. On the contrary, the larger the
			proportion of long frame moving infor-
			mation.
WDRMtIn[4]	[0, 255]	[16, 64,	An array of four values. Defines the
		128, 240]	amount of input object motion, the
			higher the value, the greater the mo-
			tion.
WDRMtOut[4]	[0.256]	[0. 128	An array of four values Defines
		224 256	the motion gain corresponding to the
		,	amount of input object motion. The
			higher the value the more it tends to
			output a custom WDR fusion recult
			which is adapted in conjunction with
		66	WDRType
WDPTmc		00	Customize the WDD fusion mode:
w Dittype		1	Oustonize the wDK fusion mode:

Table	5.14:	WDR Ke	v Parameters
Table	0.11.	WDIGING.	y i arannoucio
5.9.1.3 Tuning Steps

Before tuning parameters, please confirm that the modules listed in the Table 5.15 have been tuned, and the default values of key parameters are configured according to Table 5.14.

Module	Status/Value
BLC	Tuned
DPC	Tuned
CrossTalk Removal	Tuned
LSC	Tuned
AWB	Tuned

Table 5.15 :	WDR	Pre-tuning	related	modules
----------------	-----	------------	---------	---------

The tuning steps of WDR can be divided into tuning long and short frame fusion curves and tuning motion detection parameters.

Step 1. Tune long and short frame fusion curve, adjust **WDRCombineShortThr**, **WDRCombine-LongThr**, **WDRCombineMinWeight**, and **WDRCombineMaxWeight** to generate the first fusion image. The goal is to make sure that the bright areas are not exposed and the details of the dark areas are visible.

Step 2. Tune motion fusion parameters, adjust **WDRMtIn[4]** and **WDRMtOut[4]**. The fusion ratio of the long frame to the first fused image is determined according to the object movement. The adaptation principle is that the larger the object movement is, the larger the fusion weight of the long frame is.

Step 3. Tune the motion detection parameters and adjust the **WDRMotionFusionMode** to maintain the integrity of the motion information in the backlit or dark areas of the screen as much as possible.

---End

Long and short frame fusion curve

Parameters **WDRCombineShortThr** and **WDRCombineLongThr** are used to adjust the threshold value of selecting long and short frames. Among them, **WDRCombineShortThr** is the threshold value of short exposure, over which only short exposure data will be selected to synthesize WDR image; **WDRCombineLongThr** is the critical value of long exposure, under which only long exposure data will be selected to synthesize WDR image. The pixels between them are synthesized by fusing long and short frames. **WDRCombineMinWeight** and **WDRCombineMaxWeight** are the lowest and highest weight values of long and short exposure image data fusion. The larger the weight value is, the larger the proportion of long exposure is, and vice versa. The trend of these four parameters is shown in Fig. 5.20, with the horizontal axis representing the pixels entered as long frames.

When the **WDRCombineShortThr** value is set small, more pixels will select short frames, and the noise will become larger; when the value is set to a large value in the bright area, some pixels will choose long frame fusion, which is easy to cause overexposure. Generally, it is recommended to approach 97% of the maximum value of long exposure pixels. If the value of **WDRCombine-LongThr** is set to be small, more pixels choose to mix long and short frames, and the dark area noise will be larger; if the value is set high, more pixels choose long frames, which may cause overexposure. Generally, it is recommended to approach 80% of the maximum value of long exposure pixels. In addition, **MotionCompEnable** must be turned off when adjusting the long

and short frame fusion curves to avoid inappropriate adjustment due to the influence of motion detection information.

Fig. 5.20: Selection of long and short frame threshold

Adjust motion detection parameters

The motion detection information affects the ratio of long and short frames fusion, the more obvious the object movement, the larger the motion information, the more the object is biased towards stationary, the smaller the motion information, it is recommended to tend to use long frames in the motion region to reduce noise. Adjustment is recommended to give preference to the **WDRMotionFusionMode** of 1 to select the larger motion information among long and short frames.

SNR adaptive fusion weight adjustment mechanism

Short exposure image multiplied by exposure rate will cause some bright area noise in the picture to be over amplified. The signal-to-noise ratio adaptive fusion weight adjustment mechanism can automatically adjust the fusion weight according to the signal-to-noise ratio of the short exposure image multiplied by the exposure ratio, so as to increase the proportion of the long exposure image to suppress the effect of excessive noise amplification. When the signal-to-noise ratio is lower than the low threshold **WDRCombineSNRAwareLowThr**, the fusion weight is applied to the weight generated by the long and short frame fusion curve without adjustment. When the signal-to-noise ratio is higher than the high threshold **WDRCombineSNRAwareHighThr**, the upper limit weight **WDRCombineSNRAwareToleranceLevel** is applied, When the SNR is between the high and low critical values, the weight generated by the long and short frame fusion curve and the upper limit weight **WDRCombineSNRAwareToleranceLevel** are adjusted. The larger the adjusted weight value is, the higher the proportion of long frame fusion is, and vice versa.

5.10 DRC

5.10.1 DRC Tuning method

5.10.1.1 Function Description

Dynamic range refers to the range of brightness difference between the brightest and darkest objects in the scene. The larger the dynamic range, the richer the brightness levels in the scene. Therefore, when using general image sensors to capture high dynamic scenes, we can only choose

the low brightness area, which is easy to make the highlight area over exposed and lose the details of the highlight area. Or, considering the high light area, the low light area is under exposed, and the low light details are difficult to distinguish. In order to record every detail of high dynamic range scene, it is necessary to use high dynamic range image sensor or multiple exposure synthesis technology as described in 5.9 "WDR". However, considering that the dynamic range of general display is small, in order to preserve the details of the wide dynamic image completely, it is necessary to use DRC algorithm to compress the dynamic range of the image while retaining the details. The purpose of DRC is to make the observer get the same visual experience when observing the high dynamic scene and the display device.

5.10.1.2 Key Parameters

Parameters	Value	Default	Description
	Range	value	
Enable	[0, 1]	0	Enable DRC module;
			0: Disable
			1: Enable
TuningMode	[0,4]	0	Adjustment mode; output visual auxil-
			iary information to help users adjust;
			0: do not output visual auxiliary infor-
			mation
			3: global tone luminance display.
			4: bright tone luminance display.
			5: dark tone luminance display.
ToneCurveSelect	[0, 1]	0	Tone curve selection:
			0: select adaptive curve.
			1: select a user-defined curve.
LocalToneRefineEn	[0, 1]	0	Optimize the start of local tone map-
			ping, making the area more finely di-
			vided.
			0: Disable
			1: Enable
LocalToneEn	[0, 1]	1	Bright local tone mapping and dark lo-
			cal tone mapping are enabled.
			0: close.
			1: enable.
CurveUserDefine			User-defined curves that can be pulled
			through control points in the UI inter-
			face

Table	5.16:	\mathbf{DRC}	Key	parameters
-------	-------	----------------	-----	------------

continues on next page

			~		
Table	5.16 -	continued	from	previous	page

Parameters	Value	Default	Description
	Range	value	
WDR/SDRHistogram			LE Histogram: Luminance statistics of
			long exposure images
			SE Histogram: Luminance statistics of
			short exposure images
			Global Tone Curve: Global tone map-
			ping curve visualization
			Dark Tone Curve: dark zones tone
			mapping curve visualization
			Bright Tone Curve: bright zones tone
			mapping curve visualization
ToneCurveSmooth	[0, 500]	300	The smoothness of the change in the
			time domain of the Tone curve. The
			larger the value, the smoother the
			change in time domain, and vice versa,
			the faster the change.
TargetYScale	[0, 2048]	224	Control the overall image brightness af-
			ter Global tone mapping. The first
			multiple is 256. The larger the value
			is, the brighter the picture is: other-
			wise, the darker it is.
HdrStrength	[0, 255]	256	Controls the HDR enhancement effect
	[0, _00]		parameter, the larger the value the
			stronger the overall brightness stretch
			and vice versa the weaker the stretch
DEAdaptPercentile	[0. 25]	10	Define the dark percentile that deter-
	[0, 20]	10	mines the area of non-enhancement
			The larger the value the more areas
			are not enhanced.
DEAdaptTargetGain	[1 96]	40	dark tone adaptive target enhance-
	[1, 00]	10	ment the larger the value the brighter
			the pull 32 for double 40 for 1 25x
DEAdaptGainUB	[1 255]	96	dark tone is the upper boundary of the
DEMaptGameD	[1, 200]	50	adaptive enhancement the larger the
			value the brighter the pull 32 for dou-
			ble 06 for 3x
DEAdaptCainI B	[1 255]	16	dark tone is the lower bound of adap
	[1, 200]	10	tive reinforcement the larger the value
			the loss block 22 for double 16 for 0 5r
BritInflootDtLumo	[0 100]	40	Bright Topo in the short and long sure
DITUINECUT ULUMA		40	surve junction area of the brightness the
			sure junction area of the brightness, the
			larger the value, the higher the bright-
		50	
BritContrastLow	[0, 100]	50	Bright Ione dark area of the degree of
			darkness, the larger the value, the more
			darkness

continues on next page

Bright Tone bright area of the degree of brightening, the larger the value, the

BritContrastHigh

SdrBritContrastHigh

DetailEnhanceEn

[0, 100]

[0, 1]

Parameters

Value Range

[0, 100]

			more pull up
SdrTargetYGainMode	[0, 1]	0	Gain Mode switch 0: Directly specify the target bright- ness of the screen average 1:Based on the average of the screen, pull the brightness multiplier 1x=32
SdrTargetY	[0, 255]	56	Global tone brightens the screen, the higher the value, the higher the bright- ness
SdrTargetYGain	[32, 128]	32	The global tone brightens the screen, and the target brightness is a multiple of the current average brightness, $1x =$ 32, 2x = 64
SdrGlobalToneStr	[0, 256]	256	The intensity of global tone, the larger the value, the stronger the global tone, and vice versa, the closer to the linear tone
SdrDEAdaptPercentile	[0, 32]	10	Define the dark percentile that deter- mines the area of non-enhancement. The larger the value, the more areas are not enhanced.
SdrDEAdaptTargetGain	[1, 64]	40	dark tone adaptive target enhance- ment. The larger the value, the brighter the pull, 32 for double, 40 for 1.25x
SdrDEAdaptGainUB	[1, 255]	96	The upper bound of dark tone adaptive enhancement. The larger the value, the brighter the pull, 32 is double, 96 is 3x
SdrDEAdaptGainLB	[1, 255]	16	The lower bound for dark tone adaptive enhancement. The larger the value, the less darkness, 32 is double, 96 is 3x
SdrBritInflectPtLuma	[0, 100]	40	Bright Tone in the light and dark junc- tion area of the brightness, the larger the value, the higher the brightness
SdrBritContrastLow	[0, 100]	75	Bright Tone dark area of the degree of darkness, the larger the value, the more darkness

Table 5.16 – continued from previous page Default Description

value

80

continues on next page

Bright Tone bright area of the degree

of brightening, the larger the value, the

Enable Detail Enhance to enhance the

more pull up

details of HDR. 0: Disable. 1: Enable.

80

0

Parameters	Value	Default	Description
	Range	value	
TotalGain	[0, 255]	32	Details strengthen the overall strength,
			32 is double, 64 is twice
LumaGainEn	[0, 1]	0	Enable details enhance according to
			luma
			0: Disable.
			1: Enabled.
LumaGain[33]	[0, 255]	64	Weights for detail enhancement accord-
			ing to luma.
			It consists of 33 values divided equally
			into 33 luminance zones, each lumi-
			nance zone corresponds to a luminance
			weight. The larger the value of the
			corresponding luminance interval, the
			stronger the pixel point sharpening, 64
			is 1x
DeltailEnhanceMtIn[4]	[0, 255]	[0, 64, 128,	An array of four values. Defines the
		192]	amount of input object motion, the
		-	higher the value, the greater the cor-
			responding motion.
DeltailEnhanceMtOut[4]	[0, 256]	[128, 128,	An array of four values. Defines
		128, 128]	the motion gain corresponding to the
			amount of input object motion, the
			higher the value the stronger the detail
			intensity, 256 is doubled.
OverShootThd	[0, 255]	32	White edge sharpening upper limit
			range
UnderShootThd	[0, 255]	32	Black edge sharpening upper limit
			range
OverShootGain	[0, 255]	4	Intensity of white edge sharpening, 16
			for double
UnderShootGain	[0, 255]	4	The intensity of black edge sharpening,
			16 for double
OverShootThrMax	[0, 255]	255	The maximum upper limit range of
			white edge sharpening
UnderShootThrMin	[0, 255]	255	The maximum upper limit range of
			black edge sharpening

Table 5.16 – continued from previous page

5.10.1.3 Tuning Steps

Fig. 5.21: DRC processing flow chart and key parameters

Before tuning parameters, please confirm that the modules listed in Table 5.17 have been tuneged, and the default values of key parameters are configured according to Table 5.16.

Module	Status/Value
BLC	Tuned
DPC	Tuned
CrossTalk Removal	Tuned
AWB	Tuned
BNR	Tuned
WDR	Tuned
Noise Profile	Set

The adjustment steps of DRC are shown in Fig. 5.21. It can be divided into adjusting local tone mapping characteristic (local tone strength), adjusting tone mapping curves (global tone mapping, local tone mapping), and detail enhancement.

Adjust local tone mapping characteristic

The recommended order is to turn LocalToneEn off first and adjust the parameters of Global Tone Mapping to adjust the global brightness of the screen in place, then turn on LocalToneEn to turn on local tone mapping, and after turning on local tone mapping, you can adjust dark tone for the dark areas of the screen and adjust bright tone for the light areas of the screen to adjust the transparency. Further, LocalToneRefineEn can be turned on to make finer corrections to the regional divisions of dark and light areas.

Tone mapping curve adjustment

The Global Tone Mapping curve is a brightness mapping function. The x-axis is the input brightness, and the y-axis is the output brightness. The input and output brightness are normalized to the range of $0 \sim 1$. The general tone mapping curve is shown in:numref: *Tone mapping curve illustration*.

Fig. 5.22: Tone mapping curve illustration

The DRC module supports tone mapping curve generation parameters, in the case of Global Tone Mapping, the curve shape can be determined by the **TargetYScale** and **HdrStrength** parameters. The larger the value of **TargetYScale**, the greater the stretching of the global tone mapping curve on the overall brightness, and vice versa, the less the stretching of the brightness. When the brightness of the screen is stretched too much, resulting in the dark parts of the screen are brighter, the **HdrStrength** can be used to suppress the stretching of brightness, the larger the value is, the larger the stretching, the smaller the value is, the overall stretching can be suppressed, which is more obvious with the observation of the middle and dark parts. When Global Tone Mapping is roughly in place for the overall brightness and transparency of the picture, then adjust Dark Tone Mapping for the dark areas of the picture and Bright Tone Mapping for the light areas of the picture.

Dark Tone Mapping curve adjustment

For the dark areas of the screen, the dark areas are adjusted by Dark Tone Mapping to present details and transparency, the Dark Tone Mapping curve is through the statistics of the screen (histogram), to do adaptive (adaptive), mainly by **DEAdaptTargetGain**, to adjust the dark areas of brightness pull up, the larger the value is, the larger the dark area is stretched, the smaller the value, the smaller the stretch. When the dark area bright area boost, although it can present more

dark details, but pull the brightness of the area close to black, may cause the picture contrast reduced, in order to simultaneously take into account the dark area details and contrast, you can adjust **DEAdaptPercentile**, to retain the contrast of the dark area, the larger the value is to retain the dark area not pulled light more, the smaller the value is to retain the dark area less. On the other hand, **DEAdaptGainUB** and **DEAdaptGainLB** are provided to limit the adaptive range in order to control the sensitivity of the adaption.

Bright Tone Mapping curve adjustment

For the bright areas of the screen, Bright Tone Mapping is used to adjust the presentation of details and transparency in the bright areas. The Bright Tone Mapping curve is used to adjust the brightness of the short and long exposure junction areas through **BritInflectPtLuma**, through **BritContrastLow** to strengthen the contrast of the dark areas in the light area, the larger the value the stronger the contrast, the smaller the value the weaker the contrast, through **BritContrastHigh** to strengthen the contrast of the light areas in the light area, the larger the value the stronger the contrast, the smaller the value the weaker the contrast, the smaller the value the stronger the value th

Visualization of curve information and statistical information

The current long-exposure histogram distribution, short-exposure histogram, and the resulting Global Tone Mapping curve, Dark Tone Mapping curve, and Bright Tone Mapping curve can be obtained through the tool, and the information obtained is shown in the figure below.

Fig. 5.23: WDR statistical value square diagram and tone mapping curve diagram

User Define Curve

User-defined curve, currently positioned as a tune function, when the tone maping curve generated by the parameters to adjust the screen does not meet the user' s preferences and standards, you can use the user-defined curve to observe the changes in the screen by manually stretching the curve characteristics. In addition, user-defined curves do not support local tone mapping.

ISP Tuning Guide

C/Curv	eUserDefine		
User D	Define Exposure Ratio		4096.
B	UserDefine Exposure Ratio	33 🗘 –	
Contro	l Points		3584
B	Control Points	9 🛊 🚽	3072
Adjust			
B	х	0 :	2560
B	Y	0	2048
	Add CtrlPt Out of Chart!	Set	1536
Refere	nce Set		
Set1	 Save 	Use	1024
Reset	Reset		512
			0 1024 2048 3072 409

Fig. 5.24: Diagram of UserDefineCurve curve

Detail Enhance detail enhancement and sharpening

The DRC module supports detail enhancement, which can enhance the transparency through detail enhancement. Turn on **DetailEnhanceEn** to enable the detail enhancement function of DRC, adjust the intensity of overall detail sharpening through **TotalGain**, and do sharpening adjustment through **LumaGain** for details in different brightness areas. The rest of the parameters are designed to be consistent with PreSharpen and Sharpen modules, which can be referred to the chapters of PreSharpen and Sharpen.

SDR DRC digital wide dynamic

SDR DRC digital wide dynamic, providing linear mode tone mapping curve adjustment, through the characteristics of local tone mapping to adjust the local contrast of the picture, the adjustment principle is consistent with WDR mode, you can refer to the above description to make adjustments.

5.11 CCM

5.11.1 CCM Calibration Method

5.11.1.1 Environment and Related Equipment Preparation

Follow these steps to calibrate CCM:

• Acquisition equipment preparation: Standard X-Rite 24 color card, illumination of 600Lux uniform light source (left and right light sources, the angle between light source and color card plane is between 25 degrees and 45 degrees), IPC.

- Adjust the brightness of AE target. On the display page of PQ tool, if the G value of the 20th color block is near 201, and the G value of the 21st color block is near 163, it means that the exposure is appropriate.
- The neutral gray RAW image was collected to check the degree of lens shadow of IPC. When lens shading is serious, the shading coefficient needs to be calibrated first, and the 24 color card image needs to be corrected before CCM calibration.

5.11.1.2 CCM Calibration Tool Interface

After image acquisition, switch the main function tab of ISP calibration tool to CCM to see the CCM calibration interface, as shown in Fig. 5.25. CCM calibration tool can be divided into two parts:

- Control area: the main function of CCM calibration (red box selection area).
- Display area: display the input image (blue box selection area).

Fig. 5.25: CCM Calibration tool interface

The calibration parameters of CCM calibration tool interface include:

- Import BLC calibration parameters.
- Import LSC calibration parameters.
- ISP Gamma and Display Gamma.
- LAB reference value.
- 6x4 color block weight table, corresponding to the position of 24 color blocks. Floating point numbers with values ranging from 1.0 to 16.0.
- CCM start calibration button.
- Output CCM correction results.

5.11.1.3 CCM Calibratin Steps

Follow these steps to calibrate CCM:

Step 1. Import the RAW data needed for CCM calibration into the main interface of the calibration tool.

- Step 2. Import RAW image of 24 color card.
- Step 3. Select 24 color area.
- Step 4. Configure calibration parameters (GAMMA, LAB, color block weight).

Step 5. Click CCM calibration button to calibrate and get CCM results.

5.11.2 CCM Tuning Method

5.11.2.1 Function Description

Generally speaking, the response of human eye to the spectrum is different from that of sensor RGB. In order to make the captured image consistent with the color of human visual perception, we can use a color correction matrix to correct the cross effect and response intensity of spectral response. CCM calibration tool supports the pre correction of 3x3 color correction matrix for 24 color cards.

5.11.2.2 Key Parameters

Parameter	Value range	Default	Description
		value	
Enable	[0, 1]	0	To enable CCM function
			0: close
			1: enable
ОрТуре	[0, 1]	0	CCM operating type.
			0: Automatic mode
			(OP_TYPE_AUTO).
			1: Manual mode
			(OP_TYPE_MANUAL).
ISOActEnable	[0, 1]	0	To enable CCM Bypass function under
			low illumination.
			0: close.
			1: Enable.
TempActEnable	[0, 1]	0	To enable CCM Bypass function at
			high and low color temperatures.
			0: close.
			1: Enable.
CCMTabNum	[3, 7]	3	The number of CCM matrices cur-
			rently configured.
CCMTab[7].ColorTemp	[500,	5000	The corresponding color temperature
	30000]		value of color correction matrix under
			different color temperature.
CCM Tab[7].CCM[9]	[-8192,	1024	CCM matrix coefficients at different
	8191]		color temperatures.
SatEnable	[0, 1]	0	In manual mode, whether saturation is
			effective.
Manual.CCM[9]	[-8192,	1024	The CCM matrix coefficient in the
	8191]		manual mode, t
RedCastGain	[1, 4095]	1024	Set the white balance red channel gain
			manually.
GreenCastGain	[1, 4095]	1024	Set the white balance green channel
			gain manually.
BlueCastGain	[1, 4095]	1024	Set the white balance blue channel gain
			manually.
SaturationLE	[0, 255]	128	Long exposure saturation
SaturationSE	[0, 255]	128	Short exposure saturation

Table 5.18: CCM key parameter

5.11.2.3 Tuning Steps

Please refer to *section 5.11.1* "*CCM Calibration Method*" to complete CCM calibration. Next, turn on **SatEnable** to observe whether the saturation of the image changes as expected under different light sources.

5.12 Gamma

5.12.1 Gamma Tuning Method

5.12.1.1 Function Description

Gamma is mainly used for nonlinear conversion in the brightness space of the image to adapt to the output display device. The R, G and B channels of the image are corrected using the same set of Gamma tables. The distance between the nodes of Gamma table is the same, and linear interpolation method is used to generate the image pixels between the nodes. When the contrast and permeability of the image need to be optimized, we can try to adjust the Gamma module to improve it.

5.12.1.2 Key Parameters

Parameters	Value range	Default	Description
		value	
Enable	[0, 1]	0	To enable Gamma function
			0: close
			1: enable
CurveType	[0, 3]	2	Gamma curve type
			0: ISP_GAMMA_DEFAULT
			1: ISP_GAMMA_SRGB
			2: ISP_GAMMA_USER_DEFINE
			3: GAMMA_AUTO
GammaCOEFFI	[0.01, 20]	1	Used to control the shape of Gamma
			curve generation.
SlopeAtZero	[0.001, 20]	20	Used to control the slope near the zero
			point of Gamma.
Control PointsNum	[2, 32]	2	Points for manually dragging the curve
Auto Gamma			Different Gamma curves can be set ac-
			cording to different ambient brightness.
GammaTabNum	[1, 5]	4	Number of Auto Gamma tables

	Table 5.19): Gamma	key	parameter
--	------------	----------	-----	-----------

5.12.1.3 GammaCOEFFI and SlopeAtZero Parameter Description

According to different scenes, the parameter **GammaCOEFFI** is adjusted to control the shape of gamma curve, and the parameter **SlopeAtZero** is used to control the slope near the zero point of Gamma.

The impact of the two parameters on the shape of gamma curve is as follows:

• In the case of the same **SlopeAtZero**, the slope of the curve near the zero point is the same, and the shape of the curve varies with the parameter **GammaCOEFF**, as shown in the figure below.

Fig. 5.26: Impact of GammaCOEFF on Gamma curve

• In the case of the same **GammaCOEFFI**, the overall shape of the curve remains unchanged, but the slope near the zero will vary with the parameter **SlopeAtZero**, and there will be a slight offset. The overall change trend is shown in the figure below.

Fig. 5.27: Impact of SlopeAtZero on Gamma curve

5.12.1.4 Tuning Custom Curve with Parameters

Step 1. On the Gamma page, switch " CurveType " to " GAMMA_USER_DEFINE "

Step 2. Enter the desired value directly in "GammaCOEFFI" and "SlopeAtZero" .

Step 3. Check out the current Gamma curve

Step 4. Use the "Save" button to save the current Gamma curve for later loading.

Fig. 5.28: Diagram of custom curve using parameter adaptation

5.12.1.5 Using Control Points to Tune Custom Curves

Step 1. On the Gamma page, switch "CurveType "to "GAMMA_USER_DEFINE " Step 2. If there is a Gamma curve stored before, you can use the "Load" button to load it Step 3. Enter the desired number of control points directly in "Gontrol Point Num " Step 4. Drag the control points on the Gamma curve directly with the left mouse button Step 5. Use the "Save" button to save the current Gamma curve for later loading

		Gamma 🔀				
	[_				Load zave
		Gamma			-	
k		B	Enable	enable disable	409	
o R			Mode	GAMMA_USER_DEFINE	J	A CONTRACT OF A CONTRACT.
posure Attr			GammaCOEFFI	0.45 🗘	358	
saic		E.	SlopeAtZero	20.00 \$	•	
na		3	Control Points Num	7	- 307	
			Position.	K = 6, Y = 2811		
		Auto Game	na			
pen arpen		3	Table Choice	Table0	255	
ute			Table Number	1		
ure attr : Exposure Attr ure Info	<	-	Table0 LY	0 🔹 —	204	
tics Config		-	Table1 LV	0 0		
trast Profile		E.	Table2 LV	0 🔹 —	153	
AC			Tabla3 LV	0 .		
Adjustment amma		-	Table4 LV	0 0	- 102	
'C		Reference :	Set			
		Set1	~	Seve Use	51	
		Recet			51	
			Rese	t All Curves		

5.13 Dehaze

5.13.1 Dehaze Tuning Method

5.13.1.1 Function Description

Dehazing algorithm is mainly used in the scene with fog to improve the contrast and color saturation of the image and increase the clarity of the scene. The dehazing algorithm estimates the concentration of fog by calculating the statistical value of image content, and adaptively adjusts the intensity of dehazing.

ISP Tuning Guide

5.13.1.2 Key Parameters

Parameter	Value range	Default value	Description
Enable	[0, 1]	0	To enable Dehaze function 0: close
Strength	[0, 100]	60	Used to control the intensity of dehaze. The larger the value is, the stronger the dehazing intensity is.
MinTransMapValue	[0, 8191]	819	The minimum permitted transmission coefficient.
CumulativeThr	[0, 16383]	1024	The statistical threshold of haze con- centration was calculated. The default value is about 0.05% of the total num- ber of images in the original image.
DehazeLumaEnable	[0, 1]	0	Adjust the dehazing intensity function according to the brightness to enable.0: Disable.1: Enable.
DehazeSkinEnable	[0, 1]	0	Adjusts the dehazing intensity function to enable according to the skin tone.0: Disable.1: Enable.
SkinCb	[0, 255]	124	Customize the skin color coordinates on the Cb domain.
SkinCr	[0, 255]	132	Customize the skin color coordinates on the Cr domain.
AirLightMax	[0, 4095]	4013	Airlight' s maximum allowable value.
AirLightMin	[0, 4095]	3276	Airlight' s minimum allowable value.
AirLightMixWgt	[0, 32]	0	Airlight blending weight
AirlightDiffWgt	[0, 16]	0	Airlight
DehazeLumaCOEFFI	[0, 255]	0.5	According to the brightness control de- hazing intensity curve, the brightness is divided into 16 steps. The higher the value, the stronger the dehazing inten- sity.
DehazeSkinCOEFFI	[0, 255]	0.25	The dehazing intensity curve is con- trolled according to skin tone, and the brightness is differentiated into 16 steps. The higher the value, the stronger the dehazing intensity.
DehazeWgt	[0, 32]	0	Dehaze output blending weight
TransMapScale	[0, 255]	16	Transmission coefficient gain.
TransMapWgt • Wgt • Sigma	• Wgt: [0, 128] • Sigma:	• Wgt: 64 • Sigma: 96	The transmission coefficient gain con- trol determines the weight curve of the Dehaze result blended with the orig- inal image; the larger the Wgt , the larger the proportion of the original
	[1, 255]	86	image blended; the larger the Sigma , the larger the number of pixels blended with the original image.

Table 5.20: Dehaze key paramet	ters
--------------------------------	------

5.13.1.3 Tuning Steps

For the image of foggy scene, the parameter **Strength** is adjusted according to the demand to improve the contrast and clarity of the whole image. In principle, except **Strength**, other parameters can be configured according to the recommended default values.

- The stronger the dehazing intensity is, the higher the overall contrast and color saturation of the image will be, and the details of the dark area may be lost. Therefore, user should make a compromise parameter tuning according to the actual scene.
- After dehazing is enabled, in order to make the screen display normally, two frames are delayed

5.13.1.4 Dehaze Parameters

The parameters **DehazeLumaCOEFFI** and **DehazeSkinCOEFFI** are adjusted separately to control the shape of the generated curves according to the brightness and skin tone, both curves are adapted in the same way and similar to Gamma.

Taking **DehazeLumaCOEFFI** of 0.45 as an example, the effect on the shape of the curve is shown below.

Fig. 5.29: Effect of GammaCOEFF on Gamma curve

5.14 RGBCAC

5.14.1 RGBCAC Tuning Method

5.14.1.1 Function Description

RGBCAC (Chromatic Abberation Correction) is mainly used to eliminate the problem of purple edges in images.

ISP Tuning Guide

5.14.1.2 Key Parameters

ISP Tuning Guide

SOPIHGO 算能科技

Parameter	Value range	Default	Description
		value	
Enable	[0, 1]	0	Enable the RGBCAC module.
			0: Disable.
			1: Enable.
ОрТуре	[0, 1]	0	RGBCAC operating type.
			0: Automatic mode
			(OP_TYPE_AUTO).
			1: Manual mode
			(OP_TYPE_MANUAL).
PurpleDetRange0	[0, 128]	64	Threshold value for long frame purple
			edge detection. The higher the value,
			the more areas are judged as purple
			edges.
PurpleDetRange1	[0, 128]	96	The threshold value for short frame
			purple edge detection. The higher the
			value, the more areas are judged as pur-
			ple edges.
DePurpleStr0	[0, 255]	16	The intensity of the long frame de-
			purfacing. The higher the value, the
			less the purple edge phenomenon.
DePurpleStr1	[0, 255]	16	The intensity of the short frame de-
			purfacing. The higher the value, the
			less the purple edge phenomenon.
DePurpleStrMax0	[0, 255]	232	The maximum allowable intensity of
			long frame removal purple edge.
DePurpleStrMin0	[0, 255]	0	The minimum allowable intensity of
			long frame removal purple edge.
DePurpleStrMax1	[0, 255]	232	The maximum allowable intensity of
			short frame removal purple edge.
DePurpleStrMin1	[0, 255]	0	The minimum allowable intensity of
			short frame removal purple edge.
EdgeGlobalGain	[0, 4095]	64	The total intensity gain of the edge de-
			tection.
DePurpleCrStr0	[0, 16]	8	Long frame R-channel correction edge
			intensity.
DePurpleCbStr0	[0, 16]	8	Long frame B-channel correction edge
			intensity.
DePurpleCrStr1	[0, 16]	8	Short frame R-channel correction edge
			intensity.
DePurpleCbStr1	[0, 16]	8	Short frame B-channel correction edge
			intensity.
EdgeGainIn[3]	[0, 16]	[1, 2, 12]	An array of three values. Defines
			the edge strength level, the higher the
			value, the stronger the edge strength.
EdgeGainOut[3]	[0, 32]	$[0, 16, \overline{32}]$	An array of three values. Defines
			the edge strength gain, the higher the
			value, the stronger the effect of remov-
		89	ing purple edges.
PurpleCb	[0, 4095]	3712	The coordinates of the first set of cus-

5.14.1.3 Tuning Steps

Before doing parameter tuning, make sure that the modules listed in Table 5.22 have been tuneged and that the default values of key parameters are configured according to Table 5.21.

Module	Status/Value
BLC	Tuned
DPC	Tuned
CrossTalk Removal	Tuned
BNR	Tuned
AWB	Tuned
Demosaic	Tuned

Step 1. Adjusting **EdgeGlobaGain** to determine the total intensity gain of the edge detection. If you only need to correct the purple edges at the strong edges, you can adjust **EdgeGainIn[2]** and **EdgeGainOut[2]** appropriately to increase the gain value corresponding to the strong edges.

Step 2. Adjusting the **PurpleDeRange** to determine the extent to which purple edges are detected. Increase **PurpleDeRange** appropriately so that areas with significant purple edges in the highlights can be detected. If it is found that the normal purple color is corrected out of the highlighted areas of the image, then decrease the **PurpleDeRange** to protect the normal purple areas.

Tuning principle: Default values are recommended for **PurpleCb/PurpleCb2/PurpleCb3**, **PurpleCr/PurpleCr2/PurpleCr3**, **GreenCb** and **GreenCr**. Interested users only need to fine tune the default values for **PurpleCb/PurpleCb2/PurpleCb3**, **PurpleCr/PurpleCr2/PurpleCr3**.

Step 3. After the detection parameters have been configured by the above steps, **DePurpleStr** can be adjusted to determine the correction intensity of the purple edge as required. Further, **DePurpleCrStr** and **DePurpleCbStr** can be adjusted to determine the correction intensity of R and B channels respectively.

Tuning principle: Note that if **DePurpleStr** is set too high, making the correction intensity too strong, it is likely to cause significant graying at the purple edge. Therefore, it is sufficient to adjust **DePurpleStr** to an acceptable correction intensity for the purple border. Alternatively, you can adjust **DePurpleStrMax** and **DePurpleStrMin** to achieve the desired correction intensity.

5.15 LCAC

5.15.1 LCAC Tuning Method

5.15.1.1 Function Description

LCAC (Chromatic Abberation Correction) is mainly used to eliminate the problem of purple edges in images.

ISP Tuning Guide

5.15.1.2 Key Parameters

ISP Tuning Guide

SOPIHGO 算能科技

Parameter	Value range	Default	Description
		value	
Enable	[0, 1]	0	Enable LCAC module
			0: Disable
			1: Enable
OpType	[0, 1]	0	LCAC operating type
			0: Automatic mode
			(OP_TYPE_AUTO).
			1: Manual mode
			(OP_TYPE_MANUAL).
DePurpleCrGain	[0, 4095]	32	R channel purple edge correction gain.
			32 for 1x gain.
DePurpleCbGain	[0, 4095]	32	B channel purple edge correction gain.
			32 for 1x gain.
DePurpleCrStr0	[0, 64]	32	Long frame R-channel correction inten-
			sitv.
DePurpleCbStr0	[0, 64]	32	Long frame B-channel correction inten-
			sity
DePurpleCrStr1	[0 64]	32	Short frame B-channel correction in-
		02	tensity
DoPurploChStr1	[0, 64]	20	Short frame B channel correction in
Der urpieCosti i	[0, 04]	32	short frame D-channel correction in-
Eilter/Terra De es		0	Eilter cleation The leaves the
FilterTypeBase	[0, 3]	0	Filter selection. The larger the
			value, the stronger the de-purple edge
		20	strengtn.
EdgeGainBase0	[0, 64]	28	Strength gain for long frame edge de-
			tection.
EdgeGainBase1	[0, 64]	35	Strength gain for short frame edge de-
			tection.
EdgeCoringBase	[0, 255]	0	Noise suppression control for edge de-
			tection.
FilterTypeAdv	[0, 3]	0	Advanced filter selection. The larger
			the value, the stronger the de-purple
			edge intensity.
EdgeGainAdv0	[0, 64]	28	Advanced intensity gain for long frame
			edge detection.
EdgeGainAdv1	[0, 64]	35	Advanced intensity gain for short frame
			edge detection.
EdgeCoringAdv	[0, 255]	0	Noise suppression control for edge de-
			tection.
EdgeWgtBase			The degree of purple edge removal is
• Wet	• Wgt:	• Wgt:	controlled by the edge intensity, which
Sigma	[0,	96	determines the weight curve for blend-
~-0*****	128]	•	ing the result with the original im-
	•	Sigma:	age the larger the Wot the smaller
	Sigma:	76	the percentage of the original image is
	[1,		blended: the larger the Sigma the more
	255]		nivels are blonded with the original im
		92	are biolitic with the original fill-
EdgoWgtAdy			The degree of numbered are removed in
Dagewethav	• Wot	• Wot	The degree of purple edge removal is

Table 5.23: LCAC key parameters

5.15.1.3 Tuning Steps

Fig. 5.30: LCAC processing flow chart and key parameters

Before doing parameter tuning, make sure that the modules listed in Table 5.24 have been tuneged and that the default values of key parameters are configured according to Table 5.23.

	5
Module	Status/Value
BLC	Tuned
DPC	Tuned
CrossTalk Removal	Tuned
BNR	Tuned
AWB	Tuned
Demosaic	Tuned

Table 5.24: LCAC Pre-tuning related modules

Step 1. First, adjust **EdgeGainBase** to determine the intensity gain of edge detection. If you only need to correct the purple edge at the strong edge, you can adjust **EdgeWgtBase.Wgt** and **EdgeWgtBase.Sigma** appropriately to increase the gain value corresponding to the strong edge, the former controls the maximum value of edge detection intensity and the latter determines the range of edge detection.

Tuning Principle: EdgeGainBase, **EdgeWgtBase.Wgt** and **EdgeWgtBase.Sigma** are recommended to take the default value first and jump directly to step 3. If the result is not yet as expected, you can start the adjustment from **EdgeGainBase** first.

Step 2. The tuning principle is the same as step 1, starting with step 3. EdgeGainAdv, EdgeWgtAdv. Wgt and EdgeWgtAdv. Sigma suggest that the default values can be taken first. Depending on your needs, you can start with EdgeGainAdv first.

Step 3. Adjusting **DePurepleCrGain** and **DePurepleCbGain** to determine the intensity of the purple edge correction for the R and B channels, respectively.

Tuning principle: In WDR mode, **DePurpleCrStr0**, **DePurpleCbStr0**, **DePurple-CrStr1** and **DePurpleCbStr1** can be adapted to determine the R-channel and B-channel correction strength for long and short frames, respectively. In addition, **FilterTypeBase** and **FilterTypeAdv** control the intensity of the de-purple edge, generally using the default values first and starting to adapt as needed.

5.16 CLUT

5.16.1 CLUT Calibration Method

CLUT calibration is to establish 3D image table between input image and target image with 24 color card or user-defined source and target color pair provided by user. CLUT algorithm will image the image pixel by pixel to meet the needs of users for color adjustment. The purpose of calibration is to determine the three-dimensional shift components of CLUT for various colors by RGB pairs of input image and target image.

5.16.1.1 Environment and Related Equipment Preparation

- Standard 24 color card
- Uniform light source (D50 or D65 light box)
- Device to be calibrated and target calibration device
- Fix the lens and adjust the distance between the lens and the color card to make the color card cover at least 1/2 of the imaging screen.

5.16.1.2 CLUT Calibration Tool Interface

Switch the main function tab of ISP calibration tool to CLUT to see the interface of CLUT calibration.

The calibration interface consists of four parts

• Image control area: Control function for input images when performing CLUT calibration (red box selection area).

It contains project fonctions:

- 1. Select the image to be calibrated (Support jpg and bmp image files.)
- 2. Locate the position of the color block of the image file to be calibrated
- 3. Select target image document (Support jpg and bmp image files.)
- 4. Locate the color block position of the target image file
- Display image area: Displays the contents of the read calibration file with the color block range (blue boxed area).
- CLUT control area: The main control item (orange boxed area) when performing a CLUT calibration.

It contains the buttons:

- 1. Color selection button, confirm the color block positioning is complete, then press to obtain color block information
- 2. Constant brightness option, which can be checked according to the input image (If you do not want the CLUT to perform luminance correction you can check this item and the internal algorithm can be adjusted to reduce the effect of the CLUT on luminance

tuning. It is recommended to align the brightness of the calibration file with the target file beforehand to reduce the impact of the algorithm on the color block due to the brightness alignment behavior.)

- 3. Calibration button for CLUT calibration
- 4. Write calibration data, write the corrected CLUT information to the board side
- 5. Export calibration data, save the corrected CLUT information to disk
- RGB Color Pair Area: Displays color information for the calibrated color block (green boxed area).

shit seller:		lapethy					Target				
Open Firsters Inage	Open Target Image	Zeonin	Zono est	1008 V 100x	See	Colar Histogram	Zeon In	Zorm cut	1008 V 100x	See	Coler Hirtngron
Bit Some ROb	Etc Supr EC6										
clicc quoce	(R78 ~										
garens	- 808 v										
pt genne	(878 V										
M metain	Expert CCH veliberies										
1 1											
1 1											
1 1							*				
	ten in tet in t										
	ten for ten for										
										1.01	
konnte ogh frem inpet ipg å	inard:	Cleve R/RB							1	2	
Color	Check 24	Sal	OviCk	EarCh	Oilt	Orió	Oviā	ExtR.	EwG	ExtB	Del
T operations											
] Ioninese loveied											
Cd	onton						*				
Fulle cal	ilostics data										
Espect se	ibotics.feb.										

Fig. 5.31: CLUT Calibration tool interface

5.16.1.3 CLUT Calibration Steps

Since the brightness, white balance, Gamma curve, CCM parameters and shading of the image may affect the accuracy of the CLUT calibration, before the CLUT calibration, it is necessary to ensure that the AWB, brightness and gray scale of the device to be calibrated and the target device are in accordance with each other and the Shating correction is performed before the CLUT calibration is carried out.

Step 1. The D50 or D65 lightbox illumination provides approximately 600lux illumination for shooting with the device to be calibrated and the target device against a 24-color card, and the file can be acquired by the CviPQTool Preview function to generate a BMP file or by a back-end streaming program for image acquisition (BMP or JPG file).

Calibration principle: It is recommended that the image be obtained from the back-end streamer or the final output to align with the target device.

Step 2. Since most of the target devices are not capable of brightness fine tuning, and different devices have different brightness tuning strategies, we need to manually fine tune the device to be

calibrated to achieve the brightness-to-target result (this action is mainly for the CLUT to correct only the color tones without brightness correction, and the alignment of brightness needs to be adjusted by other modules), when performing the brightness-to-target action. The value of the G-channel of the 21st color block in the 24-color card can be obtained by adjusting the exposure function of the device to be calibrated for fine-tuning (such as EvBias item or gain item), and it will be completed when the value of the G-channel of the 21st color block and the screenshot of the target device are in close agreement.

Calibration principle: It is recommended that color cards be obtained by selecting scenes that are as bright as possible. You can refer to the 19th color block in the 24 color card and suggest that its RGB value is above 240 in order to obtain better correction results.

Step 3. Click the "Open Source Image" and "Open Target Image" buttons to load the image files taken by the device to be calibrated and the target device.

Step 4. Click the "Edit Source ROIs" and "Edit Target ROIs" buttons to check the color block of the image to be calibrated and the target image.

Step 5. Generate the corresponding color pairs. Press the "Color Check 24" button to extract the color block information selected in the previous stage to the RGB color pair area.

Step 6. "Luminance Invariant" option can be checked according to the input image. This option allows the algorithm to perform pre-processing to uniformly adjust the input color block to the brightness part of the target block, in order to reduce the effect of CLUT on the brightness tuning.

Calibration principle: It is recommended to align the brightness of the calibration file to the target file and turn off this option to reduce the impact of the algorithm on the color block by performing brightness alignment.

Step 7. Click on the "Calibration" button and wait a few minutes for the CLUT calibration parameters to be generated inside the tool.

Step 8. Apply the generated CLUT to the device to be calibrated to confirm the effect of the color adjustment (write directly to the board via the "Write calibration data" button) or export the CLUT calibration contents via the "Export calibration data" button.

Fig. 5.32: Standard 24 color card No.19 (blue circle) and color block No.21 (red circle)

5.16.2 CLUT Tuning Method

5.16.2.1 Function Description

Provide the preferred color adjustment function, by doing 17x17x17 3D LUT to linear RGB space to achieve the adjustment of preferred colors, such as green, blue, skin tone refinement adjustment.

5.16.2.2 Key Parameters

Parameter	Value range	Default	Description
		value	
Enable	[0, 1]	0	To enable CLUT module
			0: close
			1: enable
ClutR[17*17*17]	[0, 4095]	0	Adjustment for R channel. The range
			of R, G, and B values is divided into 16
			segments.
ClutG[17*17*17]	[0, 4095]	0	Adjustment for G channel. The range
			of R, G, and B values is divided into 16
			segments.
ClutB[17*17*17]	[0, 4095]	0	Adjustment for B channel. The range
			of R, G, and B values is divided into 16
			segments.

Table 5.25: CLUT key parameters

5.16.2.3 Tuning Steps

Fig. 5.33: ACM processing flow chart and key parameters

Before tuning parameters, please confirm that the modules listed in Table 5.26 have been tuneged, and the default values of key parameters are configured according to Table 5.25.

Module	Status/Value
BLC	Tuned
DPC	Tuned
CrossTalk Removal	Tuned
MLSC	Tuned
AWB	Tuned
CCM	Tuned
GAMMA	Tuned
DCI	Tuned (if enabled)
CLUT Calibration	Tuned

Table !	5.26·	CLUT	pre-tuning	related	modules
Table	5.20.		pre-tuning	renation	modules

5.17 PreSharpen

5.17.1 PreSharpen Tuning Method

5.17.1.1 Function Description

The PreSharpen module is used to enhance image sharpness and is located before 3DNR to sharpen edges and detailed textures in images. Multiple intensity combinations in different frequency bands allow for a variety of styles of sharpness enhancement, while also providing sharpened white edge white point (Over Shoot) and black edge black point (Under Shoot) suppression. Fig. 5.34 shows the system framework of the Sharpen module, with the data flow diagram in black and the open parameter interface in blue.

Fig. 5.34: System framework of the PreSharpen module

5.17.1.2 Key Parameters

Parameter	Value range	Default	Description
		value	
Enable	[0, 1]	0	To enable Pre-Sharpen module
			0: Disable
			1: Enable
ОрТуре	OP_TYPE_	AUPTO,YPE_	MACHALAIg type
	OP_TYPE_	MANUAL	OP_TYPE_AUTO: Automatic mode
			OP_TYPE_MANUAL: Manual mode
LumaAdpGainEn	[0, 1]	1	To enable brightness sharpening
			weights
LumaAdpGain[33]	[0, 63]	16	Brightness sharpening weights. $(1x =$
			64)
			*It consists of 33 values divided
			equally into 33 luminance zones, and
			each luminance zone corresponds to a
			luminance weight. The smaller the
			value of the corresponding luminance
			band, the weaker the pixel sharpening
LumaCorLutIn[4]	[0, 255]	[0, 64, 128,	luma-based coring, this is the input
		192]	node, enter luma.

Table 5.27: PreSharpen key parameters

continues on next page

Table 5.27 – continued from previous page	Table	5.27 – continued	from	previous page
---	-------	------------------	------	---------------

Parameter	Value range	Default	Description	
LumaCorLutOut[4]	[0, 255]	[1, 1, 1, 1]	Luma-based coring, this is the output node that outputs the corresponding coring value.	
MotionCorLutIn[4]	[0, 255]	[0, 64, 128, 192]	Motion-based coring, this is the input node and the input is luma.	
MotionCorLutOut[4]	[0, 255]	[8, 8, 8, 8]	Motion-based coring, this is the out- put node that outputs the correspond- ing coring value.	
MotionCorWgtLutIn[4]	[0, 255]	[0, 64, 128, 255]	Adjusting the weight of luma coring and motion coring based on motion, this is the input node and enter the size of the input motion.	
MotionCorWgt- LutOut[4]	[0, 255]	$\begin{bmatrix} 0, & 32, & 64, \\ & 128 \end{bmatrix}$	Adjusting the weight of luma coring and motion coring based on motion, This is the output node that outputs the weight of the motion coring. (max = 128)	
DeltaAdpGainEn	[0, 1]	0	To enable sharpness sharpening weights	
DeltaAdpGain[33]	[0, 63]	32	Sharpness sharpening weights *It consists of 33 values divided equally into 33 sharpening zones, and each sharpening zone corresponds to a sharpening weight. The larger the value of the corresponding sharpening interval, the stronger the pixel point sharpening.	
GlobalGain	[0, 255]	32	Global sharpening weight. *The higher the value, the stronger the sharpening.	
OverShootGain	[0, 255]	4	Multiplier for the upper magnitude of white edge sharpening. $(1x = 16)$	
UnderShootGain	[0, 255]	4	Multiplier for the upper magnitude of black edge sharpening. $(1x = 16)$	
OverShootThr	[0, 255]	32	White edge sharpening upper limit magnitude.	
UnderShootThr	[0, 255]	32	Black edge sharpening lower limit mag- nitude.	
OverShootThrMax	[0, 255]	255	Maximum upper limit magnitude of white edge sharpening.	
UnderShootThrMax	[0, 255]	255	The maximum lower limit magnitude of black edge sharpening.	
HFBlendWgt	[0, 255]	128	Weight of high frequency edge enhance- ment	
MFBlendWgt	[0, 255]	128	Weight of mid-frequency edge enhance- ment	

continues on next page

Parameter	Value range	Default	Description
NoiseSuppressEnable	[0, 1]	1	Edge enhancement is done for edge- detected images after pre-processing with enhanced denoising.
MotionShtGainIn[4]	[0, 255]	[0, 64, 128, 192]	The LUT that determines the degree of edge enhancement for the motion area, this is the horizontal node and the in- put value is the motion value.
MotionShtGainOut[4]	[0, 128]	[128, 128, 128, 128, 128, 128]	The LUT that determines the degree of edge enhancement for the motion area, this is the vertical node and the out- put value is the enhancement intensity corresponding to the motion.
SatShtCtrlEn	[0, 1]	1	Enables edge enhancement by satura- tion adjustment.0: Disable1: Enable
HueShtCtrl[33]	[0, 63]	$[16, \dots, 16]$	Edge enhancement based on specified color
SatShtGainIn[4]	[0, 255]	$\begin{bmatrix} 0, & 8, & 16, \\ 192 \end{bmatrix}$	Do edge enhancement based on the specified saturation, this is the input node, input saturation.
SatShtGainOut[4]	[0, 128]	$\begin{bmatrix} 0, & 0, & 128, \\ 128 \end{bmatrix}$	Based on the specified saturation to do edge enhancement, this is the output node that outputs the edge intensity corresponding to the saturation.
SoftClampEnable	[0, 1]	0	Enables Smooth processing edge en- hancement 0: Disable 1: Enable
SoftClampLB	[0, 255]	1	Smoothing handles the upper and lower bounds of edge enhancement. The larger the value set, the more con- tinuous the edge enhancement will be, but the weaker the enhancement will be.
SoftClampUB	[0, 255]	1	Smoothing handles the upper and lower bounds of edge enhancement. The larger the value set, the more con- tinuous the edge enhancement will be, but the weaker the enhancement will be.

5.17.1.3 Tuning Steps

Before tuning the parameters, make sure that the modules listed in Table 5.28 have been tuned and that the default values of the key parameters are configured according to Table 5.27.

Module	Status/Value
BLC	Tuned
DPC	Tuned
CrossTalk Removal	Tuned
MLSC	Tuned
BNR	Tuned
AWB	Tuned
Demosaic	Tuned
3DNR	Tuned

Table 5.28:	PreSharpen	pre-tuning	related	modules
-------------	------------	------------	---------	---------

Noise suppression of input images

The input image is pre-processed for noise removal, **NoiseSuppressEnable** is to enable the prenoise removal processing mode.

Coring value adjustment

Coring value can be adjusted by **LumaCorLut**[4] for the static zone coring value, while the moving zone part is adjusted by **MotionCorLut**[4], and finally **MotionCoringWgtLut**[4] decides the combined weight of static zone coring value and dynamic zone coring value according to the amount of movement.

Edge combination for different frequency bands

For the edge to be enhanced, it can be subdivided into the high-frequency detail area and the mid-frequency edge information, and the intensity of the high-frequency detail can be adjusted through **HfBlendWgt** and the intensity of the mid-frequency edge through **MfBlendWgt**.

Adjustment of edge strength

The adjustment of edge intensity is divided into GlobalGain, DeltaGain, LumaGain, and Motion-Gain, and adapting **GlobalGain** enhances the overall sharpening level. Adjusting **DeltaAdpGain** sets the sharpening weight according to the edge strength of the pixel. In areas where the edge strength is strong enough, the degree of sharpening itself is high, so you can set a smaller weight to avoid over-sharpening the image. In areas with weak edges, set a large weight to enhance sharpening of weak texture areas. Adjust **LumaAdpGain** to set the sharpening weight according to the brightness of the pixel. In low luminance areas, the human eye is more sensitive to pixel differences, so the sharpening weight can be set smaller. In high luminance areas, the human eye is less sensitive to pixel differences, so the sharpening weight can be configured to be larger.

The LUT input and output nodes of MotionShtGainIn [4] and MotionShtGainOut [4] are adapted. MotionShtGainIn is the input node, representing the amount of object movement, and MotionSht-GainOut the amount of object movement corresponds to the degree of image edge enhancement, which can be fine-tuned for the edge intensity of the moving region, and the intensity of the edge can be gradually adjusted down in the larger moving region to enhance the visual sense of continuity.

Amplitude control (Shoot Control)

The amplitude of the edges can be adjusted by **OverShhotGain**, **UnderShhotGain**, **OverShootThr**, **UnderShootThr**, **OverShootThrMax**, **UnderShootThrMax**, and turning down **OverShhotGain**, **UnderShhotGain**, **OverShootThr**, **UnderShootThr** can reduce the white spots (Over Shoot) and black spots (Under Shoot) caused by over-sharpening. As shown in Fig. 5.35, the higher the value of ShootThr, the greater the sharpening, but relatively speaking, it is also easy to find white and black dots on the image. In addition, you can control **OverShootThrMax** / **OverShootThrMax** to limit the maximum value of ShootThr.

Fig. 5.35: Shoot Control Schematic

5.18 3DNR

5.18.1 3DNR Tuning Method

5.18.1.1 Function Description

3DNR is mainly used in YUV domain for time-domain denoising. The degree of motion of the object is classified, and the denoising model is established according to the degree of motion. After 3DNR denoising, the jumping random noise can be effectively suppressed, and the picture is cleaner. Because 3DNR is a noise reduction method in time domain, it will produce drag shadow in processing, which will be aggravated on moving objects. The configuration of key parameters provides the configuration of motion strength and de-noising intensity of 3DNR de-noising model. At the same time, the state protection mechanism is added to weaken the performance of tailing.

5.18.1.2 Key Parameters

:numref:"

Parameters	Value range	Default	Description
		value	
Enable	[0, 1]	1	To enable 3DNR module:
			0: close
			1: enable
ОрТуре	OP_TYPE_AUTO,	OP_TYP	E_WAOUHINg type
	OP_TYPE_MANUA	L	OP_TYPE_AUTO: auto mode
			OP_TYPE_MANUAL: manual
			mode
MtDetectUnit	[3, 5]	3	Noise immunity during motion
			detection, the higher the value,
			the stronger the noise immunity,
			but the less detailed the detection.
MtFiltMode	[0, 1]	1	Motion detection filter mode.
MtFiltWgt	[0, 256]	128	Motion detection filter weight.
TuningMode	[0,1]	0	Motion Map switch
			0: close
			1: open
			In Motion Map, the brighter the
			pixel, the greater the amount of
			motion, and the darker the pixel,
			the smaller the amount of motion.
TnrMtMode	[0,1]	0	Motion mode:
			0: Motion IIR
			1: Motion history
YnrCnrSharpenMt-	[0, 1]	1	Motion mode:
Mode			0: Motion IIR
			1: Motion history
PreSharpenMtMode	[0,1]	0	Motion mode:
			0: Motion IIR
			1: Motion history
ChromaScaling-	[0, 3]	0	chroma scaling down
DownMode			0: avg
			1: drop even
			2: drop odd
			3: drop toggle

Table 5.29: 3DNR key parameters

Parameters	Value range	Default	Description
		value	
RNoiseLevel	[0, 255]	16	The dark noise tolerance of R
			pixel. The larger the value is,
			the more tolerant the noise is. At
			this time, the moving information
			of the static region disturbed by
			noise is easier to be judged as sta-
			tionary, which can improve the ef-
			fect of 3DNR noise reduction. If
			the value is too high, the small
			moving area will be judged to be
			stationary, and the 3DNR noise
			will appear motion drag.
GNoiseLevel	[0, 255]	16	The dark noise tolerance of G pix-
			els. The larger the value is, the
			more tolerant the noise is. At
			this time, the moving information
			of the static region disturbed by
			noise is easier to be judged as sta-
			tionary, which can improve the ef-
			fect of 3DNR noise reduction. If
			the value is too high, the small
			moving area will be judged to be
			stationary, and the 3DNR noise
			will appear motion drag.
BNoiseLevel	[0, 255]	16	The dark noise tolerance of B pix-
			els. The larger the value is, the
			more tolerant the noise is. At
			this time, the moving information
			of the static region disturbed by
			noise is easier to be judged as sta-
			tionary, which can improve the ef-
			Tect of 3DNR noise reduction. If
			the value is too high, the small
			moving area will be judged to be
			stationary, and the 3DNR noise
			will appear motion drag.

Table 5.29 – continued from previous page

Parameters	Value range	Default	Description
		value	
RNoiseHiLevel	[0, 255]	16	The brightness noise tolerance of
			R pixel. The larger the value is,
			the more tolerant the noise is. At
			this time, the moving information
			of the static region disturbed by
			noise is easier to be judged as sta-
			tionary, which can improve the ef-
			fect of 3DNR noise reduction. If
			the value is too high, the small
			moving area will be judged to be
			stationary, and the 3DNR noise
CN-iII:Ll		16	Will appear motion drag.
GNOISEHILEVEI	[0, 255]	10	C pivel. The larger the value is
			the more telerent the noise is At
			this time, the moving information
			of the static region disturbed by
			noise is easier to be judged as sta-
			tionary which can improve the ef-
			fect of 3DNR noise reduction If
			the value is too high, the small
			moving area will be judged to be
			stationary, and the 3DNR noise
			will appear motion drag.
BNoiseHiLevel	[0, 255]	16	The brightness noise tolerance of
			B pixel. The larger the value is,
			the more tolerant the noise is. At
			this time, the moving information
			of the static region disturbed by
			noise is easier to be judged as sta-
			tionary, which can improve the ef-
			fect of 3DNR noise reduction. If
			the value is too high, the small
			moving area will be judged to be
			stationary, and the 3DNR noise
	[0 40) ⊏ ¹	[400_000	will appear motion drag.
L2min00~L2min03(L2	1110 (11409) 1	$\begin{bmatrix} 400, 000, \\ 1000 \end{bmatrix}$	An array of four numeric values.
		1000,	the value the higher the marger
		2000]	lovel
L2mQu+00_L2mQu+02	(I@m63irvo)	63 16	An array of four numeric values
	(the through the)	$\begin{bmatrix} 16 & 16 \end{bmatrix}$	Define the motion gain the larger
		10, 10]	the value is the stronger the am-
			plitude of motion judgment is.

Table 5.29 – continued from previous page

Parameters	Value range	Default	Description
		value	
TurStrength	[0 255]	16	Motion Man amplification factor
		10	16. 1v
			$20. 9_{\rm W}$
			52. 2X 64. 4
			04: 4X
			128: 8X
		4	255:10X
MtLumaMode	[0, 1]		luma gain :
			0: Luma
			1: Max
MapThdLow	[0, 255]	0	Motion Map zoom in the lower
			limit.
MapThdHigh	[0, 255]	255	Motion Map zoom in the upper
			limit.
PrvMo-	[0, 255]	[16, 64,	An array of four numeric values;
tion00~PrvMotion03(I	rtctCurve)	128, 240]	define the movement level. The
, , , , , , , , , , , , , , , , , , ,			greater the value, the stronger the
			movement range.
PrtctWgt00~PrtctWgt	030Prt5tCurve)	[8, 8, 8, 8]	An array of four numeric values:
			the state protection gain is de-
			fined which refers to the previous
			frame data for dynamic and static
			protoction of the current frame
			protection of the current frame
			the mean reference the must
			the more reference the previous
			frame data is.
BrightnessNoiseLevel	[0, 1024]	0	To prevent misjudgment of mo-
			tion caused by flashing lights; the
			larger the value is, the more resis-
			tant it is to light flicker. However,
			if the value is too large, it will be
			difficult to detect moving objects.
MotionHistoryStr	[0, 15]	12	Defines the degree of trajectory
			retention of the output to the
			YNR reference. The higher the
			value, the longer the trajectory
			retention, and vice versa, the
			shorter the trajectory retention.

Table 5.29 – continued from previous page

Parameters	Value range	Default	Description
		value	
LowMtPrtEn	[0,1]	0	Enables airspace noise reduction
			micro motion protection; this
			function can define the protection
			degree according to the difference
			between the front and back frames
			in pixels. The higher the protec-
			tion degree is, the more likely it is
			to output the original pixel value.
			On the contrary, the lower the
			value is, the more likely it is to
			be output.
LowMtPrtLevelY	[0, 255]	255	Y-channel protection upper limit
			value. The higher the value, the
			more the protected motion area
			will be outputted in favor of the
			original pixel value. Conversely,
			the lower the value, the more it
			tends to output the pixel value af-
			ter time domain noise reduction.
LowMt-	[0, 255]	[0, 64, 100, 055]	Defines the horizontal axis of the
PrtIn Y [4] (LowMtPrtC	urve Y)	[128, 255]	LUT, i.e. the difference between
			the front and back frames in Y-
T		[0 64	Defines the continuity of the
$\frac{\text{LOWML}}{\text{PrtOutV}[4](\text{LowMtPrt})}$	[0, 255]	[0, 04, 128, 255]	LUT is the degree of protection
	Curver)	126, 200]	of the frame difference before and
			after the V-channel
LowMtPrtLevelU	[0. 255]	255	Il-channel protection upper limit
		200	value The higher the value the
			more the protected motion area
			will be outputted in favor of the
			original pixel value. Conversely.
			the lower the value, the more it
			tends to output the pixel value af-
			ter time domain noise reduction.
LowMtPrt-	[0, 255]	0	Defines the horizontal axis of the
InU[4](LowMtPrtCurv	eU)		LUT, i.e. the difference between
	,		the front and back frames in U-
			channel pixel units.
LowMt-	[0, 255]	0	Defines the vertical axis of the
PrtOutU[4](LowMtPrt	CurveU)		LUT, i.e. the degree of protection
			of the frame difference before and
			after the U-channel.

Table 5.29 - continued t	from	previous	page
--------------------------	------	----------	------

Parameters	Value range	Default	Description
		value	
LowMtPrtLevelV	[0, 255]	255	V-channel protection upper limit
			value. The higher the value, the
			more the protected motion area
			will be outputted in favor of the
			original pixel value. Conversely,
			the lower the value, the more it
			tends to output the pixel value af-
			ter time domain noise reduction.
LowMtPrt-	[0, 255]	0	Defines the horizontal axis of the
InV[4](LowMtPrtCurv	eV)		LUT, i.e. the difference between
			the front and back frames in V-
			channel pixel units.
LowMt-	[0, 255]	0	Defines the vertical axis of the
PrtOutV[4](LowMtPrt	CurveV)	Ŭ	LUT, i.e. the degree of protection
			of the frame difference before and
			after the V-channel
MotionHistoryStr	[0 15]	12	Defines the degree of trajectory
1100101111150019501		12	retention of the output to the
			VNB reference The higher the
			value the longer the trajectory
			retention and vice versa the
			shorter the trajectory retention
AdaptNrLumaS_	[0. 255]	[0 64	Defines the horizontal axis of the
trIn[4](AdaptNrLuma	$\begin{bmatrix} [0, 200] \end{bmatrix}$	$\begin{bmatrix} 10, & 04, \\ 128, & 255 \end{bmatrix}$	LUT is the difference between
		[120, 200]	the front and back frames in V-
			channel blocks
AdaptNrLumaS-	[0. 255]	[0 64	Defines the vertical axis of the
trOut[4](AdaptNrLum	aStr	$128 \ 255$	LUT is the degree of protection
		[120, 200]	of the frame difference before and
			after the V-channel
AdaptNrChromaS-	[0. 255]	[0 64	Defines the horizontal axis of the
trIn[4](AdaptNrChrom	$\begin{bmatrix} 0, 200 \end{bmatrix}$	$\begin{bmatrix} 10, & 04, \\ 128, & 255 \end{bmatrix}$	LUT is the difference between
	(4,5,01)	[120, 200]	the front and back frames in UV
			channel blocks
AdaptNrChromaS-	[0. 255]	[0 64	Defines the vertical axis of the
trOut[4](AdoptNrChrc	$\begin{bmatrix} [0, 200] \\ m_0 \text{Str} \end{bmatrix}$	[0, 04, 128, 255]	LUT is the degree of protection
	(111a,501)	[120, 200]	of the frame difference before and
			after the UV channel
LowMtPrt Ad-	[0 255]	[0 64	Defines the horizontal axis of the
v In [4] (Low Mt Prt A dy)		128 255	LUT is the difference between
		[120, 200]	the front and back frames in
			blocks
LowMtPrtAd	[0. 255]	[0 64	Dafines the vortical axis of the
vOut[4](AdaptNrI up	[0, 200]	[0, 04, 128, 255]	LUT is the protection gain of
	1001)	[120, 200]	the difference between the front
			and back frames
			and Dack Hames.

Table	5.29 –	continued	from	previous	page
-------	--------	-----------	------	----------	------

Parameters	Value range	Default	Description
	Vulue runge	value	
CompGainEnable	[0 1]	0	Enables the brightness compensa-
		0	tion function
LowMtLowDoggEn	[0, 1]	0	Week motion detection is used to
	[0, 1]	0	weak motion detection is used to
able		0	perform low-pass filtering.
LowMtPrtAd-	[0, 1]	0	Enables the null-field noise re-
vLumaEnable			duction minute-motion protection
			function. This function defines
			the degree of protection based on
			the difference between the front
			and back frames in blocks, the
			higher the degree of protection
			the more the original pixel value is
			output. Conversely, the lower the
			value, the more it tends to output
			the pixel value after time domain
			noise reduction.
LowMtPrtAdvMode	[0, 1]	0	Airspace noise reduction tiny mo-
			tion mode.
LowMtPrtAd-	[0, 255]	[8, 11,	Defines the horizontal axis of the
vIn[4](LowMtPrtAdvY	Y)	192, 208]	LUT, i.e. the difference between
			the front and back frames in
			blocks.
LowMtPrtAd-	[0, 255]	[16, 16,	Defines the vertical axis of the
vOut[4](LowMtPrtAd	vY)	16, 16]	LUT, i.e. the protection gain of
	,		the difference between the front
			and back frames.
LowMtPrtAdvMax	[0, 255]	255	Protection gain upper limit.
LowMtPrtAdvDe-	[0, 1]	0	Adjustment mode, output visual
bugMode			aid information to help users
			adapt
			0: Outputs motion detection vi-
			sualization results.
			1: Outputs motion detection vi-
			sualization results according to
			LowMtPrtDebug LUT.
LowMtPrtAdvDebu-	[0, 255]	[8. 11.	Adjustment mode. tiny motion in-
gIn[4]		192.208	put range setting.
LowMtPrtAdvDebu-	[0. 255]	[16. 16	Adjustment mode, tiny motion
gOut[4]		16.16	output value setting.
gOut[4]		16, 16]	output value setting.

Table 5.29 – continued from previous page

5.18.1.3 Tuning Steps

Fig. 5.36: 3DNR Process flow chart and key parameters

Step 1. Define the noise tolerance level. Control **RNoiseLevel** / **GNoiseLevel** / **BNoiseLevel** /**RNoiseHiLevel** / **GNoiseHiLevel** / **BNoiseHiLevel**. The greater the value, the greater the noise tolerance, the more the motion information of the static region disturbed by noise is easily judged as static, which can improve the noise reduction effect of 3DNR. But it can not be amplified too, because the excessive value makes the small moving area be judged to be stationary, and the moving residual shadow appears after 3DNR noise reduction.

Tuning principle: It is recommended to set TuningMode to 1 and open the Motion Map (the brighter the Motion Map is, the greater the amount of motion is; the darker the motion map is, the less the amount of motion is). Then, adjust the **RNoiseLevel** / **GNoiseLevel** / **BNoiseLevel** / **RNoiseHiLevel** / **GNoiseHiLevel** / **BNoiseHiLevel** / **BNoiseHiLevel** / **GNoiseHiLevel** / **BNoiseHiLevel** / **BNoiseHiLevel** / **BNoiseHiLevel** / **BNoiseHiLevel** / **BNoiseHiLevel** / **BNoiseHiLevel** to 0, and you will find a lot of runout noise. Then, gradually enlarge the value, and you will find that the runout noise is getting smaller and smaller. Properly raise the value to close to no runout noise. Don't increase the value infinitely, which will cause the 3DNR effect to be too strong and make the moving object drag.

Step 2. Define the motion gain of different gray levels. Four levels are divided according to the

gray level, namely L2mIn00 / L2mIn01 / L2mIn02 / L2mIn03 in L2mCurve. The first level gray range is defined as the darkest to the faintest motion to be distinguished; the second level gray scale is divided into areas with distinguishable but weak resolution; the third level gray scale is divided into the regions with obvious motion; the fourth level gray scale is divided into the specific configuration can be adjusted according to the actual situation.

Tuning principle: It is recommended to set TuningMode to 1 to open the motion map screen. Take the first stage as an example, first set the **L2mOut00** corresponding to **L2mIn00** to the maximum value of 63, and the gain of other stages **L2mOut01** ~ **L2mOut03** to the minimum value of 0. You will find that the motion level of **L2mIn00** area is much higher than other gray levels. If the motion area does not match the expectation, you can adjust **L2mIn00** to further define the appropriate gray range for the first stage motion. The other three gray levels are configured in the same way as the first level, as shown in Fig. 5.37 below. In order to make it easier for the dark area to detect motion, the motion gain **L2mOut00** of the first level is set to the maximum value of 63, while the other gray levels are consistent.

😇 Edit Curve			-	- 🗆 X
isp_3dnr/Auto.L2mCurve0				
	1000	2000	3000	4000
L2mIn00 400 L2mOut00 63 Current ISO ISO100	L2mIn01 600 L2mOut01 16	L2mIn02 100 L2mOut02 16	20 L2mIn03 L2mOut03	2000
			Switch Impor	rt Export

Fig. 5.37: Luminance to motion gain noise reduction model adaptation

Step 3. Define the total gain. Adjust ThrStrength to control the overall 3DNR intensity. The smaller the value is, the more regions can be easily judged as stationary regions, which can achieve the 3DNR effect, but it may also make moving objects mistakenly judged as stationary regions, resulting in shadowing phenomenon. On the contrary, the larger the value is, the smaller the motion will be detected easily, but the noise may also be misjudged as a moving object, which makes the whole picture more floating.

Tuning principle: It is recommended to set TuningMode to 1 to open the Motion Map screen. Gradually enlarge **ThrStrength** from the minimum value of 0, so that moving objects are detected more and more completely. Pay attention not to over amplify, because it is easy to cause too much jumping noise.

Step 4. Define the upper and lower limits of the total gain. Adjust the upper and lower limits of the overall gain of MapThdLow / MapThdHigh control. Initially, it is suggested to set MapThd-Low= 0 and MapThdHigh = 255 to keep the original gain state. If the value is lowered, the whole can be easily identified as a static region, and the more 3DNR superposition effect the whole has, but if the value is too low, it may cause serious drag. On the contrary, the higher the value is,

the easier it is to judge the whole as a moving area, but the higher the value is, the weaker the 3DNR effect in the static area will be, and there will be floating noise in the static area.

Step 5. Establish protection model. The tuning logic is the same as step 2, and the static area is divided into the moving area according to four levels. It is mainly used to suppress the jumping noise and shadowing in the background area. Therefore, it is suggested to set the gain high in the still region to refer to more previous frame image data. In the motion region, it is suggested to set the gain low to reduce the weight of the previous frame data.

Tuning principle: First, set **PrtctWgt00** in the first level protection gain **PrtctCurve** to the maximum 15, while the other protection gain **PrtctWgt01** \sim **PrtctWgt03** is set to 0 (unprotected), then adjust **PrvMotion00** to the appropriate value, and then adjust **PrvMotion00** to achieve the desired effect. The following two to four levels are configured in the same order. At present, the default value of protection gain at all levels is 8, which makes the weight of the previous frame number equal to the current frame number.

Step 6. Create a trajectory for YNR reference. The adaptation idea continues from step 4, and the motion track is created according to the **MotionHistoryStr** intensity and output to YNR for reference. The larger the value of **MotionHistoryStr**, the longer the trajectory can last, and the smaller the value, the shorter the trajectory can last. In this way, YNR can adaptively change the intensity of the moving area to match with 3DNR for the size of the moving track.

Step 7. Adjusts the denoising intensity for the amount of object motion. LowMtPrtY / LowMt-PrtU / LowMtPrtV / LowMtPrtAdv is mainly for the weak motion area, and the motion volume is divided according to four levels to control the de-stimulation intensity. Finally, AdaptNr-LumaStr / AdaptNrChromaStr can be adjusted to control the mapping curve of motion volume to suppress the effect of noise on motion volume detection.

Tuning principle: First, the weak motion detection parameters **LowMtPrtY** / **LowMtPrtU** / **LowMtPrtV** are adjusted in pixel units to detect the range of weak motion while suppressing noise. Then, adjust the block-based weak motion detection parameters **LowMtPrtAdv** to further adjust and optimize the weak motion detection range. Finally, adjust the control image curve parameters **AdaptNrLumaStr** / **Adapt-NrChromaStr** to strengthen the noise immunity of motion detection and reduce the areas that are misidentified as motion due to the influence of noise.

5.19 YNR

5.19.1 YNR Tuning Method

YNR (Y-domain Noise Reduction) is used to suppress the bright noise.

5.19.1.1 Function Description

YNR is mainly used for spatial denoising in luma domain. According to different sensors, the denoising model is established. After proper denoising by YNR, the final image looks natural, and some common visual defects, such as insect noise and pattern noise, are avoided. The configuration of key parameters provides flexibility to adjust the intensity of denoising. At the same time of noise suppression, the edge, texture and details of the image are retained, the original noise pattern is not changed, and the random noise is retained to a certain extent, so the signal-to-noise ratio and overall uniformity of the image results can be improved.

5.19.1.2 Key Parameters

Parameter	Value range	Default value	Description
Enable	[0, 1]	0	Enable YNR module ;
			0: close.
			1: enable.
OpType	[0, 1]	0	YNR working type;
			0: automatic mode
			(OP_TYPE_AUTO)
			1: manual mode
			(OP_TYPE_MANUAL)
WindowType	[0, 11]	11	The local degree of denoising filter.; the
			smaller the value is, the more localized
			the action is.
DetailSmoothMode	[0, 1]	1	Enable the de-noising detail smoothing
			function;.
			0: close.
			1: enable.
NoiseSuppressStr	[0, 255]	0	Noise suppression intensity; the larger
			the value is, the stronger the suppres-
			sion intensity of bright noise is.
FilterType	[0, 255]	0	Denoising filter strength; the larger the
			value is, the stronger the suppression
			intensity of bright noise is.
NoiseCoringBase	[0, 255]	0	Motion zone luminance noise tolerance
			value, the judgment of the motion zone
			is linked with TNR motion zone detec-
			tion. The larger the value, the greater
			the denoising intensity of the motion
			area.
NoiseCoringAdv	[0, 255]	0	Brightness noise tolerance value in
			static region ; the judgment of mo-
			tion area is linked with the detection
			of TNR motion area. The larger the
			value, the greater the denoising inten-
			sity of the static area.
FiltModeEnable	[0, 1]	1	Enables the filter manual tuning mix-
			ing mode.
FiltMode	[0, 256]	128	Filter manual tuning mixing weights.
VarThr	[0, 255]	64	The threshold of edge detection; the
			larger the value, the less the number
			of edges.
NonDirFiltStr	[0, 31]	0	Adjust the denoising intensity in the
			low frequency region. The larger the
			value is, the more noise is removed in
			the low frequency region.
VhDirFiltStr	[0, 31]	0	Adjust the denoising intensity in the
			horizontal and vertical areas. The
		^	larger the value is, the more noise is
		116	removed at the horizontal and vertical
			edges.

Table 5	5.31:	YNR	key	parameters
---------	-------	-----	-----	------------

5.19.1.3 Tuning Steps

Fig. 5.38: YNR Process flow chart and key parameters

Before tuning parameters, please confirm that the modules listed in Table 5.32 have been tuneged, and the default values of key parameters are configured according to Table 5.31.

Module	Status/ Value
BLC	Tuned
DPC	Tuned
CrossTalk Removal	Tuned
AWB	Tuned
Demosaic	Tuned
CCM	Tuned
Gamma	Tuned
3DNR	Tuned
Noise Profile	Set

Table 5.32: YNR pre tuning related modules

Step 1. Adjust the brightness noise denoising function. The relevant parameters include noise suppression strength, **NoiseSuppressStr**, static area noise suppression strength, **NoiseCoringAdv**, and denoising filter strength, **FilterType**. The parameters will be configured according to different ISO. First, adjust the **NoiseSuppressStr** to increase gradually until the whole image can keep the full details and minimize the noise. Especially for the static region, the **NoiseCoringAdv** can be adjusted appropriately to reduce the noise. Then, increase the **FilterType** appropriately, and cooperate with other denoising modules to tune.

Tuning principle: The uniformity of the whole image noise is kept as much as possible, and the impact noise, insect noise and pattern noise are avoided. For the configuration of the parameters **WindowType** and **DetailSmoothMode**, the default values are recommended.

Step 2. VarThr is controlled to determine the low and high frequency regions of the image, and then NonDirFiltStr and VhDirFiltStr / AaDirFiltStr are adjusted to change the denoising intensity. The larger the NonDirFiltStr is, the less the noise is in the low frequency region, while the larger the VhDirFiltStr / AaDirFiltStr is, the smoother the image edge is.

Tuning principle: It is suggested that **NonDirFiltStr** and **VhDirFiltStr** / **AaDirFiltStr** should be set to the same value to denoise the whole image evenly. If the smoothness of image edge meets the requirement, **NonDirFiltStr** and **VhDirFiltStr** / **AaDirFiltStr** are set to 0.

Step 3. Adjust the **MotionThr** to divide the image into moving regions and regions with static background: the larger the **NoiseCoringBase** and **MotionNrPosGain**, the less the noise in the regions with moving amount larger than this **MotionThr**; The smaller the **MotionNrNegGain** is, the less the noise is in the area with less movement than **MotionThr**. **NoiseCoringBase** can also be adjusted appropriately for object moving regions to reduce noise. Alternatively, if one wishes to fine-tune the de-noise intensity of the object moving region at different amounts of motion, one can use **MotionYnrLut** [16].

Tuning principle: If you want to reduce the noise in the moving area of the image, it is recommended to use **NoiseCoringBase** first, and gradually increase **NoiseCoringBase** to enhance the noise removal intensity until it is similar to the background noise pattern. **MotionThr** and **MotionNrPosGain** are recommended to use default values. In addition, **NoiseCoringMax** can be adjusted according to the demand to set the maximum allowable noise removal intensity.

Step 4. According to the low-frequency and high-frequency regions of the image obtained in step 2, the degree of random noise is retained by adjusting the parameters **CoringWgtLF** and **CoringWgtHF** respectively. Appropriately increasing **CoringWgtLF** can improve the worm noise and pattern noise, while appropriately increasing **CoringWgtHF** can increase the sense of detail. Alternatively, if one wishes to fine-tune the degree of noise retention in the moving region of the object for different amounts of motion, one can use **MotionCoringWgtLut** [16].

Tuning principle: It is suggested that **CoringWgtLF** and **CoringWgtHF** should be set to the same value to make the noise of the whole image evenly distributed. If the above noise types do not appear in the image, **CoringWgtLF** and **CoringWgtHF** are set to 0. In addition, the **CoringWgtMax** and **MotionCoringWgtMax** settings can be adjusted separately for the overall image and object motion areas allowing the maximum amount of noise to be retained.

5.20 CNR

5.20.1 CNR Tuning Method

CNR (Color Noise Reduction) can suppress color noise.

5.20.1.1 Function Description

CNR is mainly used for spatial color and noise removal in YUV domain. The edge of the object in the image is adaptively calculated to suppress the color noise and avoid the color overflow phenomenon.

5.20.1.2 Key Parameters

Parameter	Value range	Default	Description
Fnable	[0, 1]		Enable CNR module :
	[0, 1]	0	Chable Civit module ,
			1: onable
OpTupa	[0, 4]	0	CNP working two:
Optype	[0, 4]	0	Or automatia mode
			(OP_TYPE_AUTO)
			1: manual mode
			(OP_TYPE_MANUAL)
DetailSmoothMode	[0, 1]	0	Enable the de-noising detail smoothing
			function;
			0: close.
			1: enable.
CnrStr	[0, 255]	16	the intensity of color noise removal: the
	[0, _00]		larger the value is, the stronger the de-
			noising intensity is.
FilterType	[0, 31]	0	the strength of color noise filter: the
	[0, 01]	Ŭ	larger the value is the stronger the
			color noise removal is
LumaWat	[0.8]	1	The weight of color noise denoising
Dunia (Vg)	[0, 0]	1	with reference to luminance. The
			larger the value the stronger the lumi-
			nance affects the color noise denoising
NoisoSupproseStr	[0. 255]	0	Color poise suppression intensity: the
roisesuppressor	[0, 200]	0	larger the value is the stronger the de
			noising intensity is
NoigeSuppress	[1 0]	0	Indishig intensity is.
NoiseSuppressGam	[1, 8]	0	sign, the larger the value is the
			sion; the larger the value is, the
Mation NuCtor		20	A limit the interview of value waits as
MotionNrStr	[0, 255]	32	Adjust the intensity of color noise re-
			moval in the moving area; the larger
			the value is, the less color noise is in
			the motion region.
MotionCnrEnable	[0, 1]	0	Enable adjusting the de-noise intensity
			function with reference to the object
			movement
			U: close
			1: enable
MotionCnrCoringLut[16]	[0, 255]		Use LUT to adjust the color noise
			suppression intensity corresponding to
			different object motion amounts, and
			distinguish the motion amounts into
			16 steps. The higher the value, the
			stronger the color noise rejection inten-
			sity.
MotionCnrStrLut[16]	[0, 255]		Use the LUT to adjust the de-noise in-
		100	tensity corresponding to different ob-
		120	ject motion amounts, distinguishing
			the motion amounts into 16 steps. The

Table 5.33: CNR key parameters

5.20.1.3 Tuning Steps

Fig. 5.39: CNR Process flow chart and key parameters

Before tuning parameters, please confirm that the modules listed in Table 5.34 have been tuneged, and the default values of key parameters are configured according to Table 5.33.

Module	Status/Value
BLC	Tuned
DPC	Tuned
CrossTalke Removal	Tuned
MLSC	Tuned
BNR	Tuned
Demosaic	Tuned
CCM	Tuned
Dehaze	Tuned (if enabled)
CLUT	Tuned (if enabled)
3DNR	Tuned

Table 5.34: CNR Pre tuning related modules

Step 1. The denoising intensity is adjusted for color noise. The related parameters include Color noise denoising strength **CnrStr** and Color noise denoising filter strength **FilterType**. The parameters will be configured according to different ISO. Firstly, the parameter **FilterType** is adjusted to increase gradually until the edge of the object in the image is minimized without color overflow. When the **FilterType** has reached the maximum value, but the color noise still needs to be eliminated, we can appropriately increase the intensity of **CnrStr** to control the color noise removal of the whole image, and it can be adapted with **NoiseSuppressStr**.

Tuning principle: The default value is recommended for the configuration of **DetailSmoothMode** and **NoiseSuppressGain**.

Step 2. Adjust the parameter **MotionNrStr** to control the color noise size of the moving area of the object in the image until it is similar to the background color noise pattern. The larger the value of **MotionNrStr** the stronger the denoising intensity of color noise. In addition, if you want to fine-tune the de-colorization intensity of the object moving area at different motion amounts, you can use **MotionCnrStrLut**[16] and **MotionCnrCoringLut**[16].

5.21 CA

5.21.1 CA Tuning Method

5.21.1.1 Function Description

The CA module mainly does the color gamut adjustment in the YUV domain and supports two different modes, CA mode and CP mode. CA mode provides chromaticity (U, V) mapping adjustment, which can determine the UV gain based on the luminance Y and ISO value, and then achieve the purpose of adjusting the local saturation, making the brighter colors more vivid while reducing the color noise in the dark areas. CP mode is generally used in thermal imaging color, and thermal imaging itself only luminance information, CP mode can be directly from the luminance Y to find the corresponding set of YUV output values.

5.21.1.2 Key Parameters

ISP Tuning Guide

SOPIHGO 算能科技

Parameter	Value range	Default	Description
		value	
Enable	[0, 1]	0	Enable CA module.
			0: close
			1: enable
CaCpMode	[0, 1]	0	CA mode option
			0: CA mode
			1: CP mode
ISORatio	[0, 2047]	128	CA mode, find the UV gain according
			to the ISO value. The UV adjustment
			gain is the same for all pixel points. It
			is recommended that this gain can be
			set larger at low ISO and smaller at
			high ISO to suppress color noise in dark
			areas.
YRatioLut[256]	[0, 2047]	128	CA mode, find the gain of UV accord-
			ing to the brightness Y. This value can
			be set according to different brightness
			levels of UV gain, it is recommended
			that the gain in the light area can be
			set larger, the color will be more vivid,
			while the gain in the dark area can be
			set smaller, to suppress the dark area
			color noise.
CPLutY[256]	[0, 255]		CP mode, find the Y value correspond-
			ing to the LUT according to the lumi-
			nance Y.
CPLutU[256]	[0, 255]		CP mode, find the U value correspond-
			ing to the LUT according to the bright-
			ness Y.
CPLutV[256]	[0, 255]		CP mode, find the V value correspond-
			ing to the LUT according to the bright-
			ness Y.

Table -	5.35:	CA	Key	Parameters
---------	-------	----	-----	------------

5.21.1.3 Precautions

CA mode and CP mode can only be on one of them, not both.

5.22 CAC

5.22.1 CAC Tuning Method

5.22.1.1 Function Description

CAC (Chromatic Abberation Correction) mainly used to eliminate the problem of purple edge in the image.

5.22.1.2 Key Parameters

Parameter	Value range	Default	Description
Enable	[0, 1]	0	Enable CAC module ;
			0: close.
			1: enable.
ОрТуре	[0, 5]	0	CAC working type;
			0: automatic mode
			(OP_TYPE_AUTO)
			1: Manual mode
			(OP_TYPE_MANUAL)
EdgeGlobalGain	[0, 255]	12	The total gain in intensity of edge de-
			tection. The higher the value, the
			stronger the edge intensity.
PurpleDetRange	[0, 128]	96	The threshold value of purple edge de-
			tection; the larger the value is, the
			more areas are judged as purple edges.
DePurpleStr	[0, 255]	30	The intensity of removing the purple
			edge; the larger the value is, the less
			the purple edge phenomenon is.
DePurpleCbStr	[0, 8]	8	B channel purple edge correction edge
			intensity. The higher the value, the less
			purple edge phenomenon.
DePurpleCrStr	[0, 8]	8	R channel purple edge correction edge
1			intensity. The higher the value, the less
			purple edge phenomenon.
DePurpleStrMaxRatio	[0, 64]	64	The maximum gain that can be allowed
		-	of removing purple edge intensity.
DePurpleStrMinRatio	[0, 64]	0	The minimum gain that can be allowed
		-	of removing purple edge intensity.
PurpleCb	[0, 255]	232	The coordinates of the first set of cus-
1			tom purple edges in the Cb domain.
PurpleCr	[0, 255]	157	The coordinates of the first set of cus-
1			tom purple edges in the Cr domain.
GreenCb	[0, 255]	43	The coordinates of green in Cb domain.
GreenCr	[0, 255]	21	The coordinates of green in Cr domain.
PurpleCb2	[0, 255]	232	The coordinates of the second set of
		_	custom purple edges in the Cb domain.
PurpleCr2	[0, 255]	176	The coordinates of the second set of
			custom purple edges in the Cr domain.
PurpleCb3	[0, 255]	232	The coordinates of the third set of cus-
		_	tom purple edges in the Cb domain.
PurpleCr3	[0, 255]	176	The coordinates of the third set of cus-
1			tom purple edges in the Cr domain.
GreenCb	[0, 255]	43	The coordinates of green in the Cb do-
	[0, _00]		main.
GreenCr	[0, 255]	21	The coordinates of green in the Cr do-
	[2, _00]		main.
EdgeGainIn[3]	[0, 16]	[1, 2, 7]	An array of two values Defines the
		[±, _ , •]	edge strength level the higher the
		126	value, the stronger the edge strength
EdgeGainOut[3]	[0, 32]	[0, 4, 32]	An array of two values. Defines the
1	I L⁻, ♡─J	I L-, -, - , -]	

Table 5.36: CAC key parameters

5.22.1.3 Tuning Steps

Fig. 5.40: CAC Process flow chart and key parameters

Before tuning parameters, please confirm that the modules listed in Table 5.37 have been tuneged, and the default values of key parameters are configured according to Table 5.36.

Modules	Status/Value
BLC	Tuned
DPC	Tuned
CrossTalk Removal	Tuned
MLSC	Tuned
BNR	Tuned
AWB	Tuned
Demosaic	Tuned
CCM	Tuned
Dehaze	Tuned (if enabled)
CLUT	Tuned (if enabled)
3DNR	Tuned

Table 5.37 :	CAC pre	tuning	related	modules
----------------	---------	--------	---------	---------

Step 1. Adjusting EdgeGlobalGain to determine the total intensity gain of the edge detection. If only the purple edge at the strong edge needs to be corrected, EdgeGainIn[2] and EdgeGainOut[2] can be adjusted appropriately to increase the gain value corresponding to the strong edge.

Tuning principle: The above parameters are recommended to take the default values first, starting from step 2, and if the results are not found to be as expected, then the parameters related to edge detection can be adapted.

Step 2. Adjust the **PurpleDeRange** to determine the range to be detected as a purple edge. Increase the **PurpleDeRange** appropriately to make the areas with obvious purple edges in the highlight can be detected. If it is found that the normal purple in the highlight of the image is corrected, it is necessary to reduce the **PurpleDeRange** to protect the normal purple area.

Tuning principle: Interested users can fine-tune the three custom purple edge parameters **PurpleCb/PurpleCb2 /PurpleCb3** and **PurpleCr/PurpleCr2/PurpleCr3**. **GreenCb/GreenCb** is recommended to take the default value.

Step 3. After the detection parameters are configured by the above steps, **DePurpleStr** can be adjusted to determine the correction intensity of the purple edge according to the require-

ments. Further, **DePurpleCbStr** and **DePurpleCrStr** can be adjusted to determine the correction intensity of the R and B channels.

Tuning principle: Note that if **DePurpleStr** is set too high, the correction intensity will be too strong, which may cause obvious graying at the purple edge. Therefore, adjust **DePurpleStr** to an acceptable purple edge correction intensity.

5.23 DCI

5.23.1 DCI Tuning Method

5.23.1.1 Function Description

Human vision is more sensitive to contrast than brightness. After the whole ISP pipeline processing, the image often results in insufficient contrast, thus reducing the details in the bright or dark areas. DCI is a method based on histogram equalization, which can enhance the contrast of the whole image, and adjust the parameters to retain more details of bright and dark areas.

5.23.1.2 Key Parameters

Parameter	Value range	Default	Description
		value	
Enable	[0, 1]	0	Enable DCI module ;
			0: close.
			1: enable.
ОрТуре	[0, 1]	0	DCI working type;
			0: automatic mode
			(OP_TYPE_AUTO)
			1: Manual mode
			(OP_TYPE_MANUAL)
ContrastGain	[0, 1023]	100	It is used to control the intensity
			of DCI. The larger the value is, the
			greater the contrast is.
BlcThr	[0, 255]	60	The threshold value used to determine
			the range of dark areas. The larger the
			value is, the larger the range of dark
			areas is.
WhtThr	[0, 255]	200	The threshold value used to determine
			the range of bright areas. The larger
			the value is, the larger the range of
			bright areas is.
Method	[0, 1]	0	Switch between old and new algorithm,
			open DCI recommendation with new
			method.
			0: Old
			1: New
BlcCtrl	[0, 512]	256	It is used to determine the contrast of
			dark areas. When the value is 256,
			the contrast of dark area remains un-
			changed. When the ratio is larger than
			256, the larger the value is, the greater
			the contrast in the dark area is; on the
			contrary, the smaller the value is, the
		270	smaller the contrast is.
WhtCtrl	[0, 512]	256	It is used to determine the contrast of
			bright areas. When the value is 256,
			the contrast of bright area remains un-
			changed. When the ratio is larger than
			250, the larger the value is, the greater
			the contrast in the oright area is; on
			the contrary, the smaller the value is,
DeiStmon ath	[0.955]	0	The non-meter to control DCL on
Dependent	[0, 200]	U	hancement effects the larger the value
			is the stronger the overall trans
			parenew is and vice verse
DeiCainMar	[0.256]	18	Isod to control the upper contract
	[0, 200]	40	limit the higher the value the strenger
		120	the contrast can be
Speed	[0.1024]	300	The smoothness of DCL surve in time
beed		300	The smoothness of DCI curve in time

Table 5.38: DCI key parameters

5.23.1.3 Tuning Steps

Fig. 5.41: DCI processing flow chart and key parameters

Before tuning parameters, please confirm that the modules listed in:numref: *DCI pre-tuning related modules* have been tuneged, and the default values of key parameters are configured according to Table 5.38.

Module	Status / Value
BLC	Tuned
DPC	Tuned
CrossTalk Removal	Tuned
MLSC	Tuned
BNR	Tuned
AWB	Tuned
Demosaic	Tuned
CCM	Tuned
Gamma	Tuned
Dehaze	Tuned (if enabled)
CLUT	Tuned (if enabled)
3DNR	Tuned

Table 5.39: DCI pre-tuning related modules

Step 1. First, **DciStrength** is used to adjust the overall image contrast enhancement. The larger the value, the stronger the contrast of the whole image. When **DciStrength** has reached the maximum value, but users still want further enhancement, **ContrastGain** can be appropriately increased to control the image contrast.

Step 2. The areas where brightness is increased and brightness is decreased after contrast enhancement can be further differentiated and controlled separately. The parameters **WhtThr** and **BlcThr** determine the range of light and dark areas, and then use **WhtCtrl** and **BlcCtrl** to control their contrast respectively. By increasing both **WhtCtrl** and **BlcCtrl**, the brighter and darker areas of the image are made brighter and darker to further enhance the contrast of the image.

Tuning principle: The WhtCtrl can be appropriately reduced to recover the image details due to the over saturation of brightness after contrast enhancement. In addition, the contrast enhancement of the dark area should be controlled appropriately to prevent the noise from being over enhanced. Note that BlcThr must be less than WhtThr.

Step 3. If the screen flickers, you can turn off the DCI function first, and then observe to make sure it is still there. If it does, you can use the parameter **Speed** to solve the problem. The higher the value, the smoother the DCI changes in the time range and the less the screen will flicker.

5.24 LDCI

5.24.1 LDCI Tuning Method

5.24.1.1 Fonction Discription

Human eye vision is more sensitive to contrast than brightness. LDCI is a method based on image chunking statistics to enhance the local contrast of an image, while the filtering parameters can be adjusted to adjust the local extent of local contrast enhancement. In addition, the parameters can be adjusted according to the brightness of the input image.

5.24.1.2 Key Parameters

Parameter	Value range	Default	Description
		value	
Enable	[0, 1]	0	Enable the LDCI module.
			0: Disable.
			1: Enabled.
OpType	[0, 1]	0	LDCI operating type.
			0: Automatic mode
			(OP_TYPE_AUTO).
			1: Manual mode
			(OP_TYPE_MANUAL).
LdciStrength	[0, 256]	192	Controls the LDCI Enhancement pa-
			rameter. The higher the value, the
			stronger the local contrast stretch.
LdciRange	[0, 1023]	256	Controls the degree of contrast en-
			hancement for the high-frequency ar-
			eas of the image. The larger the value,
			the stronger the contrast in the high-
			frequency area of the image.
GaussLPFSigma	[0, 255]	64	The degree of local filtering, the smaller
			the value, the more localized the local
			contrast enhancement effect, and vice
			versa, the more globalized.
LumaPosWgt			The intensity of the LDCI effect is
Wet	• Wgt:	• Wgt:	controlled according to the brightness.
Sigma	[0,	128	and the weight-brightness curve of the
Mean	128]	•	LDCI result blended with the original
11100011	•	Sigma:	image is determined.
	Sigma:	128	mage is determined.
	[1,	•	
	255]	Mean:	
	•	0	
	Mean:		
	[0,		
	255]		
LumaWgtMin	[0, 255]	0	LumaPosWgt lower limit
LumaWgtMax	[0, 255]	128	LumaPosWgt upper limit
VarMapMin	[0, 255]	0	VarMap lower limit
VarMapMax	[0, 255]	255	VarMap upper limit
BrightContrastHigh	[0, 255]	64	The degree of brightness pulling in the
			bright area, the larger the value, the
			more the brightness pulling up.
BrightContrastLow	[0, 255]	64	The degree of darkening of the bright
			area, the larger the value, the more
			brightness darkening.
DarkContrastHigh	[0, 255]	96	The degree of brightness pulling in dark
			areas, the larger the value, the more
			brightness pulling up.
DarkContrastLow	[0, 255]	96 194	The dark area of the degree of dark-
		104	ness, the larger the value, the more
			brightness darkness.

5.24.1.3 Tuning Steps

Fig. 5.42: LDCI processing flow chart and key parameters

Before tuning the parameters, make sure that the modules listed in Table 5.41 have been tuned and that the default values of the key parameters are configured according to Table 5.40.

Module	Status/Value
BLC	Tuned
DPC	Tuned
CrossTalk Removal	Tuned
MLSC	Tuned
BNR	Tuned
AWB	Tuned
Demosaic	Tuned
CCM	Tuned
Gamma	Tuned
Dehaze	Tuned (if enabled)
CLUT	Tuned (if enabled)
3DNR	Tuned

Table 5.41: LDCI pre-tuning related modules

Step 1. First, use **LdciStrength** to adjust the degree of local contrast enhancement of the image. The higher the value, the stronger the local contrast of the image.

Step 2. Adjust **BrightContrastHigh** and **BrightContrastLow** to increase and decrease the brightness of the bright areas of the image, respectively. Adjust **DarkContrastHigh** and **DarkContrast-Low** to increase and decrease the brightness of the dark areas of the image, respectively. The higher the value, the stronger the local contrast of the image.

Step 3. The window size of the filter is controlled by the parameter **GaussLPFSigma** to determine the degree of local contrast enhancement in the local area. The smaller the value, the more localized the image enhancement effect is, and conversely, the more global the tendency is.

• Trend of filter coefficient shapes with different **GaussLPFSigma** parameters

Step 4. The **LdciRange** can be adjusted to control the degree of contrast enhancement in the high-frequency region of the image. The larger the value, the greater the degree of contrast enhancement in the high frequency region of the image.

Step 5. Based on the brightness information of the input image, the weight-brightness curve can be generated by the parameters **Wgt**, Sigma and Mean to adjust the degree of local contrast enhancement and determine the ratio of the LDCI result to the original image. The higher the weight, the closer the result is to the LDCI image. The trend of the weight curve generated by these three parameters is shown below.

- Trend of weight-brightness curve of parameter \mathbf{Wgt}

• Trend of weight-brightness curve with different Sigma parameters

• Trend of weight-brightness curve under different **Mean** parameters

Step 6. The statistics of the LDCI are filtered in the time domain by the parameter **TprCoef** to make the statistics change smoothly. The smaller the value, the better the smoothness of the LDCI change in time domain.

5.25 CA_Lite

5.25.1 CA_Lite Tuning Method

5.25.1.1 Fonction Discription

The CA_Lite module can determine the UV gain value based on the saturation value to adjust the local saturation, especially to reduce the color noise of the image for better visual perception, and also to adjust the saturation according to the user's preference to make the overall picture look more comfortable.

5.25.1.2 Key Parameters

Parameter	Value range	Default value	Description	
Enable	[0, 1]	0	Enable the CA_Lite module.	
			0: Disable.	
			1: Enabled.	
Ca2In[6]	[0, 192]	$[4\;, 8\;, 12\;, 18\;, 32\;, 192]$	An array of six values that determines	
			the input saturation level.	
Ca2Out[6]	[0, 2047]	[128, 128, 128, 128, 128, 128]	An array of six values that defines the	
		, 128]	UV gain of the output. Find the UV	
			gain based on the input saturation, the	
			larger the value, the higher the satura-	
			tion; conversely, the smaller the value.	

Table 5.42:	CA_{-}	_Lite K	ey Pa	arameters
-------------	----------	---------	-------	-----------

5.25.1.3 Tuning Steps

For scenes with particularly pronounced color noise or over-saturated areas in HDR effect, the parameters **CA2In[6]** and **CA2Out[6]** can be adjusted as needed to determine the corresponding UV gain for each input saturation range, respectively, to improve the overall image saturation and make the visual experience more comfortable.

5.26 Sharpen

5.26.1 Sharpen Tuning Method

5.26.1.1 Function Description

Sharpen module is used to enhance image sharpness, mainly for enhancing large edges in images. By combining multiple intensities in different frequency bands, a variety of styles of sharpness enhancement can be achieved, while also providing sharpened white edge white point (Over Shoot) and black edge black point (Under Shoot) suppression. Fig. 5.43 shows the system framework of the Sharpen module, with the data flow diagram in black and the open-adjustment parameter interface in blue.

Fig. 5.43: System Framework for Sharpen Module
5.26.1.2 Key Parameters

Parameter	Value range	Default value	Description
Enable	[0, 1]	0	Enable the Pre-Sharpen module.
			0: Disable.
			1: Enabled.
ОрТуре	OP_TYPE_AUT	OP_TYPE_MAN	Monthead Type
	OP_TYPE_MAI	NUAL	OP_TYPE_AUTO: Automatic
			mode
			OP_TYPE_MANUAL: Manual
			mode
LumaAdp-	[0, 1]	1	Enable brightness sharpening
GainEn			weights
LumaAdp-	[0, 63]	16	Brightness sharpening weights $(1x =$
Gain[33]			64)
			*It consists of 33 values divided
			equally into 33 luminance zones, and
			each luminance zone corresponds to
			a luminance weight. The smaller
			the value of the corresponding lu-
			minance band, the weaker the pixel
			sharpening
LumaCor-	[0, 255]	[0, 64, 128, 192]	luma-based coring, this is the input
LutIn[4]		[0, 0_,]	node. enter luma.
LumaCor-	[0, 255]	[1, 1, 1, 1]	luma-based coring, this is the output
LutOut[4]			node that outputs the corresponding
			coring value.
MotionCor-	[0, 255]	[0, 64, 128, 192]	Motion-based coring, this is the in-
LutIn[4]			put node and the input is motion.
MotionCor-	[0, 255]	[8, 8, 8, 8]	Motion-based coring, this is the out-
LutOut[4]			put node that outputs the corre-
			sponding coring value.
MotionCorWgt-	[0, 255]	[0, 64, 128, 255]	Based on the motion adjusts the
LutIn[4]			weights of the luma coring as well
			as the motion coring, this is the in-
			put node and input the size of the
			motion.
MotionCorWgt-	[0, 255]	[0, 32, 64, 128]	Based on the motion adjusts the
LutOut[4]			weights of the luma coring as well as
			the motion coring, this is the out-
			put node and output the size of the
			motion. $(\max = 128)$
DeltaAdp-	[0, 1]	0	Enable sharpness sharpening
GainEn			weights

Table 0.40. Sharpen key parameters	Table 5	.43: S	harpen	key	parameters
------------------------------------	---------	--------	--------	-----	------------

Table	5.43 – continued from previous page	

Parameter	Value range	Default value	Description
DeltaAdp-	[0, 63]	32	Sharpness sharpening weights
Gain[33]			*It consists of 33 values divided
			equally into 33 sharpening zones,
			and each sharpening zone corre-
			sponds to a sharpening weight. The
			larger the value of the corresponding
			sharpening interval, the stronger the
			pixel point sharpening.
MotionSht-	[0, 255]	[0, 64, 128, 192]	The LUT that determines the degree
GainIn[4](Motion	ShtGainCurve)		of edge enhancement for the motion
	,		area, this is the horizontal node and
			the input value is the motion value.
MotionShtGain-	[0, 128]	[128, 128, 128, 128,]	The LUT that determines the degree
Out[4](MotionSht	GainCurve)	128]	of edge enhancement for the motion
	,		area, this is the vertical node and the
			output value is the enhancement in-
			tensity corresponding to the motion.
SatShtCtrlEn	[0, 1]	1	Enable edge enhancement adjusted
			by saturation
			0: Off
			1: Enabled
HueShtCtrl[33]	[0, 63]		Edge enhancement based on speci-
			fied color
SatShtGainIn[4]	[0, 255]	[0, 8, 16, 192]	Make edge enhancement based on
			the specified saturation, this is the
			input node, input saturation.
SatShtGain-	[0, 128]	[0, 0, 128, 128]	Based on the specified saturation to
Out[4]			make edge enhancement, this is the
			output node that outputs the edge
			intensity corresponding to the satu-
			ration.
GlobalGain	[0, 255]	32	Global sharpening weights.
			*The higher the value, the stronger
			the sharpening.
OverShootGain	[0, 255]	4	The multiplier of the upper magni-
			tude of white edge sharpening. (1x
			= 16)
UnderShoot-	[0, 255]	4	The multiplier of the upper magni-
Gain			tude of black edge sharpening. (1x
			$ = 16 \rangle$
OverShootThr	[0, 255]	32	White edge sharpening upper range.
UnderShootThr	[0, 255]	32	White edge sharpening lower range.
OverShoot-	[0, 255]	255	Maximum upper limit magnitude of
ThrMax	[[[]] []]		white edge sharpening.
UnderShoot-	[0, 255]	255	Maximum lower limit magnitude of
ThrMax			black edge sharpening
			show ongo shar poining.

Value range	Default value	Description
[0, 255]	128	Weight of high frequency edge en-
		hancement
[0, 255]	128	Weight of mid-frequency edge en-
		hancement
[0, 1]	0	Edge enhancement is done for edge-
		detected images after pre-processing
		with enhanced denoising.
[0, 1]	0	Smooth Handling Edge Enhance-
		ment
		0: Off.
		1: Enabled.
[0, 255]	1	Smooth the upper and lower bounds
		of edge enhancement. The larger the
		value set, the more continuous the
		edge enhancement will be, but the
		weaker the enhancement will be.
[0, 255]	1	Smooth the upper and lower bounds
		of edge enhancement. The larger the
		value set, the more continuous the
		edge enhancement will be, but the
		weaker the enhancement will be.
	Value range [0, 255] [0, 1] [0, 1] [0, 255] [0, 255]	Value range Default value [0, 255] 128 [0, 255] 128 [0, 1] 0 [0, 1] 0 [0, 255] 1 [0, 255] 1

Table 5.43 – continued from previous page

5.26.1.3 Tuning Steps

Before doing parameter debugging, make sure that the modules listed in Table 5.44 have been debugged and that the default values of key parameters are configured according to Table 5.43.

Module	Status/Value
BLC	Tuned
DPC	Tuned
CrossTalk Removal	Tuned
MLSC	Tuned
BNR	Tuned
AWB	Tuned
Demosaic	Tuned
3DNR	Tuned

Table 5.44: Sharpen pre-tuning related modules

Noise suppression of input images

The input image is pre-processed for noise removal, **NoiseSuppressEnable** is to enable pre-noise processing mode.

Coring value adjustment

Coring value can be adjusted by **LumaCorLut**[4] for the static zone coring value, while the moving zone part is adjusted by **MotionCorLut**[4], and finally **MotionCoringWgtLut**[4] decides the combined weight of static zone coring value and dynamic zone coring value according to the amount

of movement.

Edge combination of different frequency bands

For the edge to be enhanced, it can be subdivided into the high-frequency detail area and the mid-frequency edge information, and the intensity of the high-frequency detail can be adjusted through **HfBlendWgt** and the intensity of the mid-frequency edge through **MfBlendWgt**.

Edge strength adjustment

The adjustment of edge strength is divided into GlobalGain, DeltaGain, LumaGain, and Motion-Gain. Adjusting **GlobalGain** enhances the overall sharpening level. Adjusting **DeltaAdpGain** sets the sharpening weight according to the edge strength of the pixel. In areas with strong edges, the sharpening level is already high, so you can set the weight smaller to avoid over-sharpening the image. In areas with weak edges, you can set a large weight to enhance the sharpening of weak texture areas. Adjust **LumaAdpGain** to set the sharpening weight according to the brightness of the pixel. In low luminance areas, the human eye is more sensitive to pixel differences, so the sharpening weight can be set smaller. In high luminance areas, the human eye is less sensitive to pixel differences, so the sharpening weight can be configured to be larger.

The LUT input and output nodes of MotionShtGainIn [4] and MotionShtGainOut [4] are adapted. MotionShtGainIn is the input node, representing the amount of object movement, and MotionSht-GainOut the amount of object movement corresponds to the degree of image edge enhancement, which can be fine-tuned for the edge intensity of the moving region, and the intensity of the edge can be gradually adjusted down in the larger moving region to enhance the visual sense of continuity.

Amplitude control(Shoot Control)

The amplitude of the edges can be adjusted by **OverShhotGain**, **UnderShhotGain**, **OverShootThr**, **UnderShootThr**, **OverShootThrMax**, **UnderShootThrMax**, and turning down **OverShhotGain**, **UnderShhotGain**, **OverShootThr**, **UnderShootThr** can reduce the white spots (Over Shoot) and black spots (Under Shoot) caused by over-sharpening. As shown in Fig. 5.44, the higher the value of ShootThr, the greater the sharpening, but relatively speaking, it is also easy to find white and black dots on the image. In addition, you can control **OverShootThrMax** / **OverShootThrMax** to limit the maximum value of ShootThr.

Fig. 5.44: Shoot Control Schematic

5.27 Auto Exposure

5.27.1 Auto Exposure Tuning Method

5.27.1.1 Fonction Discription

Linear mode

The main function of the AE module is based on the statistical information of the image and the set screen target brightness comparison, dynamic adjustment of the screen brightness to achieve the desired target brightness, when the screen brightness is higher than the target brightness, the AE will reduce the exposure, and vice versa to increase the exposure, AE is mainly through the control of exposure time, exposure gain, and aperture to adjust the exposure of the three ways, according to the needs of different scenes, can be designed Different AE exposure distribution route (route) to correspond, for example: dynamic scenes when objects move quickly, the need to correspond to a shorter exposure time to avoid objects produced by the movement of trailing shadows, in static scenes, the longer exposure time should be given priority to reduce the noise phenomenon of the screen, to get a better image quality.

WDR mode

When the contrast between light and dark of the scene is too large, because the AE in linear mode can only set one exposure, so it can only take into account the light or dark areas, not both, if the light areas are exposed properly, the dark areas will be too dark to see the details, on the contrary, if the dark areas are exposed properly, the light areas will be a whole white and can not see the details, then you need the WDR' s multiple exposure to solve this problem, respectively, the dark areas to do long exposure and light areas to do short exposure, so that the dark areas and light areas of the scene exposure is normal at the same time, to get a more generous image.

AE Route

Maximum support for 16 nodes , each node has exposure time , gain , aperture three components , exposure time in us , it is recommended not to set too small to avoid sensor can not support too short exposure time , the exposure of the node is the product of exposure time , gain and aperture , the exposure of the node is monotonically increasing , the exposure of the next node is greater than or equal to the exposure of the previous node. The exposure of the first node is the smallest, the exposure of the last node is the largest, the exposure of adjacent nodes increases, each node will only have a component increase, the other components are fixed, the increase in the component determines the allocation strategy of the route.

AE RouteEx

The use is the same as Route, but the gain can be set as analog gain, digital gain, or ISP digital gain, respectively, and the route or routeEx can be determined by setting AERouteExValid.

SmartExposure

If face detection is supported, you can use Smart AE to perform face metering based on the detected face.

Iris

If the lens supports aperture switching, AE can automatically switch Iris according to the ambient brightness, this function is currently only supported.

5.27.1.2 Key Parameters

Parameter	Value range	Default value	Description
Bypass	[0, 1]	0	Enable AE module function, When By-
			Pass is true, the AE exposure parame-
			ter setting does not take effect and re-
			mains at the previous exposure param-
			eter
OpType	[0, 1]	0	Manual exposure and auto exposure
			mode switching.
AERunInterval	[1, 255]	1	Detection interval for AE algorithm op-
			eration
AERouteExValid	[0, 1]	0	Enables AE using routeEx
HistStatAdjust	[0, 1]	0	AE will automatically adjust the expo-
			sure according to the statistics of the
			bright area of the scene, suitable for the
			use of dark exposure scenes
AEGainSepCfg	[0, 1]	0	When in WDR mode, whether the gain
		-	of long/short detection is set separately
ExpTimeOpType	[0, 1]	0	Enable manual exposure time
GainType	[0, 1]	0	Manual exposure gain is controlled by
			ISO num or by Gain
			0:AE_TYPE_GAIN.
			1:AE_TYPE_ISO.
ISONumOpType	[0, 1]	0	Enable manual exposure ISO num
AGainOpType	[0, 1]	0	Enable the manual exposure analog gain.
DGainOpType	[0, 1]	0	Enable manual exposure digital gain
ISPDGainOpType	[0,1]	0	Enable manual exposure ISP digital gain
ExpTime	[0, 214	16384	Manual exposure time, in microseconds
	7483647]		(us), range related to sensor
Again	[1024, 214	1024	Manual exposure analog gain, 10 bits
	7483647]		fractional precision, sensor-dependent
			range
DGain	[1024, 214	1024	Manual exposure digital gain, 10
	7483647]		bits fractional precision, sensor related
			range
ISPDGain	[1024, 214	1024	Manual exposure ISP digital gain , 10
	7483647]		bits fractional precision
ISONum	[100, 214]	100	Manual exposure ISO num , the spe-
	7483647]		cific range is related to the sensor
ExpTimeRangeMax	[0, 214]	1 00000	The maximum value of the automatic
	7483647]		exposure time in microseconds (us), in
			the range related to the sensor

Table 5.45: A	E key paramet	ers
---------------	---------------	----------------------

Table 5.45 – continued from previous page

Parameter	Value range	Default	Description
		value	
ExpTimeRangeMin	[0, 214]	10	The minimum value of the automatic
	7483647]		exposure time in microseconds (us), in
			the range related to the sensor
ISONumRangeMax	[100, 214	1280 00000	The maximum value of ISO Num for
	7483647]		automatic exposure, in the range re-
	-		lated to the sensor
ISONumRangeMin	[100, 214	100	The minimum value of ISO Num for au-
	7483647]		tomatic exposure, in the range related
			to the sensor
AGainRangeMax	[1024, 214	2 04800	The maximum value of the auto-
	7483647]		exposure analog gain, the specific range
			is related to the sensor
AGainRangeMin	[1024, 214	1024	The minimum value of the auto-
	7483647]		exposure analog gain, the specific range
			is related to the sensor
DGainRangeMax	[1024, 214	2 04800	The maximum value of the auto-
	7483647]		exposure digital gain, the specific range
			is related to the sensor
DGainRangeMin	[1024, 214	1024	The minimum value of the auto-
	7483647]		exposure digital gain, the specific range
			is related to the sensor
ISPDGainRangeMax	[1024,	32767	The maximum value of the auto expo-
	262144]		sure ISP digital gain
ISPDGainRangeMin	[1024,	1024	The minimum value of the auto expo-
	262144]		sure ISP digital gain
SysGainRangeMax	[1024, 214]	13107	The maximum value of the gain of the
	7483647]	20000	automatic exposure system, the spe-
			cific range is related to the sensor
SysGainRangeMin	[1024, 214]	1024	The minimum value of the gain of the
	7483647]		automatic exposure system, the spe-
			cific range is related to the sensor
GainThreshold	[1024, 429]	13107	System gain threshold during auto-
	4967295]	20000	matic frame reduction, 10bit fractional
			precision
GridBvWeight	[0, 100]	0	AE metering is divided into two types
			of block luma / bvStep average, the de-
			fault is luma-based, this parameter can
			set luma-based metering mixed with
			bvStep metering weight, highlight pri-
			ority if you think the image is too dark,
			you can adjust the weight of this pa-
			rameter
HighLightLumaThr	[0, 255]	224	Luminance threshold for highlight pri-
			ority
HighLightBufLumaThr	[0, 255]	176	Luminance threshold of the high light
			priority buffer

Table	5.45 –	continued	from	previous	page
rabie	0.10	continued		premous	Pubu

Parameter	Value range	Default	Description
LowLightLumaThr	[0, 255]	16	Luminance threshold for low light pri-
20112181102011012111	[0, 200]	10	ority
LowLightBufLumaThr	[0, 255]	48	Luminance threshold for low light pri-
			ority buffer
Speed	[0, 255]	64	AE convergence speed, the larger the
			value, the faster the convergence speed
BlackSpeedBias	[0, 65535]	144	Deviation value of convergence speed
			from dark to light AE, the larger the
			value, the faster the speed from dark
Talananaa	[0.955]	0	Televanes deviation of outematic sure
Tolerance	[0, 255]	2	sure to picture brightness
Compensation	[0. 255]	56	Target brightness of the auto exposure
Compensation	[0, 200]	50	screen
EVBias	[0_65535]	1024	Exposure deviation value for auto ex-
		1021	posure adjustment . 10bit fractional
			precision 1024 means no adjustment of
			auto exposure
AEStrategyMode	[0, 1]	0	Automatic exposure strategy.
			AE_EXP_HIGHLIGHT_PRIOR :
			High light priority
			AE_EXP_LOWLIGHT_PRIOR :
			Low Light Priority
HistRatioSlope	[0, 65535]	128	Adjustment step of AE target bright-
			ness decrease/rise when high/low opti-
		10	mal light
MaxHistOffset	[0, 255]	10	The maximum range of AE target
			timal light
AEMode	[0 1]	1	Auto exposure mode
		1	AE MODE SLOW SHUTTEB Au-
			tomatic frame drop mode
			AE MODE FIX FRAME RATE:
			fixed frame rate mode
Antiflicker enable	[0, 1]	0	Anti-flash property, anti-flash is dis-
			abled by default
AntiflickerFrequency	[0, 1]	0	Anti-flash frequency, it will be effec-
			tive only after the anti-flash property
			is turned on
			0:60HZ
		0	1: 50H
Antiflicker.Mode	[0, 1]	U	Anti-flash mode: normal anti-flash
Subfielen mable	[0 1]	0	Inode/automatic anti-flash mode
Submcker.enable		U	fault sub anti flash is not onabled
Subflicker luma Diff	[0. 255]	0	Anti-flash setting
	[0, 200]	U	Ann-naon octuing

When the image brightness is lower

than the target brightness for more

overall environment metering

The weight ratio of face metering and

Parameter

AEDelay-

Attr.BlackDelayFrame

[0, 255]

			than BlackDelayFrame frames, AE starts to adjust
AEDelay- Attr.WhiteDelayFrame	[0, 255]	0	When the image brightness is greaterthan the target brightness for morethan WhiteDelayFrame frames, AEstarts to adjust.
FSWDRMode	[0, 1]	0	FSWDR mode of operation.ThedefaultISP_FSWDR_NORMAL_MODE.Note:cv180x does not support thisfunction
WDRQuick	[0, 1]	0	In WDR mode, whether to perform temporal filtering in the first 50 frames of AE
ISOCalCoef	[0, 65535]	256	ISO calibration coefficient, used to en- sure that the ISO displayed in the DCF information required for taking pictures is standard, 8bit precision
AdjustTargetMin	[0, 255]	50	Luminance convergence lower limit for AE at various ambient luminances (LV)
AdjustTargetMax	[0, 255]	60	Luminance convergence cap for AE at various ambient luminances (LV)
LowBinThr	[0, 256]	10	When the window statistical value of the frame is below this value, and the cumulative number of windows is less than 25% of the total number of win- dows, the frame's metering will ex- clude this window
HighBinThr	[0, 256]	256	When the window statistical value of the frame is above this value, and the cumulative number of windows is less than 10% of the total number of win- dows, the frame's metering will ex- clude this window
EnableFace AE	[0, 1]	0	Enable face recognition linked AE me- tering
FaceTargetLuma	[0, 255]	46	Target brightness for face metering

Table 5.45 – continued from previous page Value range Default Description

value

0

WDR Mode

FaceWeight

80

[0, 100]

Parameter	Value	De-	Description
	Tange	value	
ExpRatioType	[0, 1]	0	Only valid in multi-frame synthesis WDR mode.
			OP_TYPE_AUTO: AE automatically calculates
			the exposure ratio of long and short frames accord-
			ing to the scene.
			OP_TYPE_MANUAL: Manually set the long
			and short detection exposure ratio.
ExpRatio	[64,	64	Only valid in multi-frame synthesis WDR mode
	16384]		When ExpRatioType is OP_TYPE_MANUAL,
			set manual long and short exposure, this
			OP TVPF AUTO
			6 bit decimal precision 0x40 means the exposure
			ratio is 1 times
ExpRatioMax	[64.	16384	Only valid in multi-frame synthesis WDR mode
	16384]	10001	When ExpRatioType is OP TYPE AUTO, it
	1		means the maximum exposure ratio of long and
			short detection, this value is invalid when ExpRa-
			tioType is OP_TYPE_MANUAL
			6 bit decimal precision, 0x40 means the exposure
			ratio is 1 times
ExpRatioMin	[64,	256	Only valid in multi-frame synthesis WDR mode.
	16384]		When ExpRatioType is OP_TYPE_AUTO, it
			means the minimum exposure ratio of long and
			short detection, this value is invalid when ExpRa-
			tioType is OP_TYPE_MANUAL, 6 bit decimal
Tolerance	[0]	6	Only in the multi-frame composite WDB mode
	255	0	the tolerance deviation of the effective long and
	200]		short frames to the screen brightness.
Speed	[0,	1024	The adjustment speed of the automatic exposure
	255]		ratio is only effective in the multi-frame composite
	1		WDR mode. The larger the value, the faster the
			speed.
RatioBias	[0,	1024	Only valid in multi-frame synthesis WDR mode.
	65535]		When ExpRatioType is OP_TYPE_AUTO, the
			larger the value, the greater the auto exposure ra-
			tio, and when the value is 1024, it means that the
	[0	50	auto exposure ratio will not be adjusted.
SECompensation	[0, 255]	56	Target brightness for short frames.
LEAdjustTargetMin	[0.	50	The lower limit of the brightness convergence of
	255]		the AE long frame at each ambient brightness
	L		(LV), it is recommended that the settings of the
			adjacent LV lower limit should not be too differ-
			ent to avoid flickering caused by AE convergence.
LEAdjustTargetMax	[0,	60	The upper limit of the brightness convergence of
	255]		AE long frames at each ambient brightness (LV),
			it1i48recommended that the settings of the upper
			limit of adjacent LVs should not be too different to
			avoid Higkoring galigod by AH' gonvorgongo

Table 5.46:	WDR AE key parameters	
-------------	-----------------------	--

Parameter	Value range	Default	Description
		value	
TotalNum	[0, 16]	0	The number of nodes in the AE expo-
			sure distribution route
IntTime	[0,	0	AE route distribution route, node ex-
	4294967295]		posure time, unit (us)
SysGain	[1024,	1 024	The distribution route of AE route, the
	4294967295]		exposure gain of the node, 10 bits dec-
			imal precision
enIrisFno	[0, 10]	0	The distribution route of AE route, the
			aperture value of the node

Table 5.47: AE Route key parameters

Table 5.48 :	AE RouteEx	kev	parameters
10010 0.40.	TIL HOUGLA	ncy	parameters

Parameter	Value range	Default	Description
		value	
TotalNum	[0, 16]	0	The number of nodes in the AE expo-
			sure distribution route
IntTime	[0,	0	AE routeEx distribution route, node
	4294967295]		exposure time, unit (us)
Again	[1024,	1024	Allocation route of AE routeEx, expo-
	4294967295]		sure simulation gain of nodes, 10 bits
			decimal precision
Dgain	[1024,	1024	Allocation route of AE routeEx, node
	4294967295]		exposure digital gain, 10 bits decimal
			precision
IspDgain	[1024,	1024	AE routeEx distribution route, node
	4294967295]		exposure ISP digital gain, 10 bits deci-
			mal precision
enIrisFno	[0, 10]	0	Aperture value of the node

Table 5.49: Statistics config key paramet	ers
---	-----

Parameter	Value range	Default value	Description
Weight	[0, 255]	1	AE 17x15 window metering weight
			value

Exposure Info page for current AE information.

Table 5.50 :	AE	info	key	parameters
----------------	----	------	-----	------------

Parameter	Value range	Default	Description
		value	
ExpTime	[0, 4294967295]	0	AE current exposure time, unit:
			us
ShortExpTime	[0, 4294967295]	0	In WDR mode, short frame expo-
			sure time, unit (us)

Parameter	Value range	Default	Description
		value	
LongExpTime	[0, 4294967295]	0	In WDR mode, long frame expo-
			sure time, unit (us)
WDRExpRatio	[0, 4294967295]	0	In WDR mode, the exposure ra-
() <u>D</u> 10 <u>D</u> 11p100010			tio of the long/short frame of the
			current frame 6 bits desimal pro
			current frame, o bits decimal pre-
		1004	
AGain	[1024, 4294967295]	1024	AE analog gain of the current ex-
			posure, 10 bits decimal precision
DGain	[1024, 4294967295]	1024	AE digital gain of current expo-
			sure, 10 bits decimal precision
ISPDGain	[1024, 2147483647]	1024	AE current exposure ISP digital
			gain, 10 bits decimal precision
Exposure	[64 4294967295]	64	The current exposure is equal to
Linpostaro		01	the product of exposure time and
			exposure gain where the unit of
			exposure gain, where the unit of
			exposure time is the number of
			exposure lines, and the exposure
			gain is 6bit decimal precision
ExposureIsMax	[0, 1]	0	0: ISP has not reached the maxi-
			mum exposure level;
			1: ISP reaches maximum expo-
			sure level.
HistError	[-32768, 32767]	0	The difference between AE cur-
			rent frame brightness and target
			brightness
AE Hist256Value	[0_4294967295]	0	Histogram distribution of AE
	[0, 1201001200]		
A-+		0	The brightness of the current
AveLum	[0, 235]	0	The brightness of the current
			frame of AE, in WDR mode, indi-
			cates the current frame brightness
			of the long frame.
Fps	[0, 4294967295]	0	After dividing by 100, it is the
			current frame rate of AE
LinesPer500ms	[0, 4294967295]	0	The current number of expo-
			sure lines corresponding to every
			500ms can be used to convert the
			unit of exposure time from us to
			the number of lines
PirisFno	[0 1024]	0	The equivalent gain correspond
1 11151/110			ing to the auront D Irig exerting
			E relue
100		100	r value
150		100	AE current exposure ISO value
ISOCalibrate	[0, 4294967295]	100	Standard ISO, used for taking pic-
			tures DCF information display

Table 5.50 – continued from previous page

Darameter		Dofault	
I arameter	value range	Delault	Description
		value	
RefExpRatio	[64, 16384]	64	Reference exposure ratio, used to
			estimate the dynamic range of the
			current scene
FirstStableTime	[0, 4294967295]	0	The time for the first AE to con-
			verge and stabilize, in microsec-
			onds (us)
AERoute.TotalNum	[0, 16]	0	AE current number of route nodes
AERoute.RouteNode	[0, 4294967295]	0	The current route of AE
AEB-	[0, 16]	0	AE current routeEx node number
outeEx TotalNum			
	[0_4204067205]	0	AE current routeEx route
ALIC-		0	AL CUITERI TOULELX TOULE
NIDDCI A L			
WDRShortAveLuma	[0, 255]	0	The brightness of the current
			frame of the WDR mode short
			frame
LEFrameAvgLuma	[0, 255]	0	The average brightness of the cur-
			rent frame in WDR mode long
			frame
SEFrameAvgLuma	[0, 255]	0	The average brightness of the cur-
			rent frame in WDR mode short
			frame
LightValue	[-32768_32767]	0	AE evaluates the current ambient
			lightness (IV) value
AGainSF		1024	AE short frame current exposure
AGamor		1024	analog gain 10 bits desimal pro
			analog gain, 10 bits decimal pre-
		1004	
DGainSF	[1024, 4294967295]	1024	The digital gain of the current ex-
			posure of the AE short frame, 10
			bits decimal precision
ISPDGainSF	[1024, 2147483647]	1024	AE short frame current exposure
			ISP digital gain, 10 bits decimal
			precision
ISOSF	[100, 2147483647]	100	AE short frame current exposure
			ISO value
AER-	[0, 16]	0	The current number of route
outeSF TotalNum		Ĭ	nodes in the AE short frame
AEB-	[0_4294967295]	0	The current route of the AE short
outoSF BoutoNodo			frame
AED + C			
ALKOUTES-			I ne current number of route
FEX. IotalNum			nodes in the AE short frame
AERouteS-	[0, 4294967295]	0	The current route of the AE short
FEx.RouteNode			frame

Table 5.50 – continued from previous page

Parameter	Value range	Default	Description
		value	
Enable	[0, 1]	0	Enable smart AE
IRMode	[0, 1]	0	Whether it is infrared mode
SmartExpType	[0, 1]	0	Smart AE automatic/manual mode se-
			lection
LumaTarget	[0, 255]	46	Smart AE target brightness
ExpCoef	[0, 65535]	1024	Exposure Factor for Smart AE Manual
			Exposure Adjustment
ExpCoefMax	[0, 65535]	4096	Smart AE Exposure Factor Maximum
ExpCoefMin	[0, 65535]	256	Smart AE exposure factor minimum
SmartInterval	[1, 255]	1	Smart AE running interval
SmartSpeed	[1, 255]	32	Adjustment speed of smart AE
SmartDelayNum	[1, 255]	5	Smart AE delay recovery frame number
Weight	[0, 100]	80	Light metering ratio of smart AE
NarrowRatio	[0, 100]	75	Indented Area Ratio of Subject Bright-
			ness Calculated by Smart AE

Table 5.51: SmartExposure key parameters

Table 5.52: AE RouteSF key parameters \mathbf{T}_{1}

Parameter	Value range	Default	Description
		value	
TotalNum	[0, 16]	0	The number of nodes in the AE
			short frame exposure distribution
			route
IntTime	[0, 4294967295]	0	AE short frame route distribution
			route, node exposure time, unit
			(us)
SysGain	[1024, 4294967295]	1024	AE short frame route distribution
			route, node exposure gain, 10 bits
			decimal precision
enIrisFno	[0, 10]	0	Allocation route of AE short
			frame route, aperture value of
			node

Parameter	Value range	Default	Description
		value	
TotalNum	[0, 16]	0	The number of nodes in the AE
			short frame exposure distribution
			route
IntTime	[0, 4294967295]	0	AE short frame routeEx distribu-
			tion route, node exposure time,
			unit (us)
Again	[1024, 4294967295]	1024	AE short frame routeEx distribu-
			tion route, node exposure analog
			gain, 10 bits decimal precision
Dgain	[1024, 4294967295]	1024	AE short frame routeEx distribu-
			tion route, node exposure digital
			gain, 10 bits decimal precision
IspDgain	[1024, 4294967295]	1024	AE short frame routeEx distribu-
			tion route, node exposure ISP dig-
			ital gain, 10 bits decimal precision
enIrisFno	[0, 10]	0	Aperture value of short frame
			node

Table 5.53: AE RouteSFEx key parameters $% \left({{{\rm{A}}} \right)$

Parameter	Value range	Default	Description
		value	
Enable	[0, 1]	0	Enable auto iris
OpType	[0, 1]	0	Auto iris or manual iris mode se-
			lection
IrisType	[0, 1]	0	Aperture type, DC-Iris or P-Iris
IrisStatus	[0, 255]	46	Aperture status
HoldValue	[0, 65535]	1024	Deep Learning correction value for DC-Iris debugging
IrisFNO	[0, 65535]	4096	The size of the manual aperture is distinguished according to the aperture F value, only supports P-Iris, not DC-Iris.
Кр	[0, 65535]	256	Proportional gain, used to adjust the opening and closing speed of the aperture, the larger the value, the faster the aperture opens and closes
Ki	[1, 255]	1	Integral gain, used to adjust the opening and closing speed of the aperture, the larger the value, the faster the aperture opens and closes
Kd	[1, 255]	32	Differential gain, used to limit the opening and closing speed of the aperture when the light changes drastically, the larger the value is, the slower the aperture opens and closes when the light changes drastically
MinPwmDuty	[1, 255]	5	Minimum PWM duty cycle. The smaller the value, the faster the closing speed of the overexposure aperture
MaxPwmDuty	[0, 100]	80	Maximum PWM duty cycle. The larger the value is, the faster the aperture opens when the screen is completely dark
OpenPwmDuty	[0, 100]	75	PWM duty cycle when the aper- ture is open

5.27.1.3 Tuning Steps

Step 1. According to the application of the scene, the weight of metering can be set according to the area of interest in metering. Generally speaking, the central area of the screen will be the area of more attention, and the weight of metering in the center of the screen can be higher than that of the peripheral area.

Step 2. According to the application of the scene, set the required AE route, determine the distribution route of the shutter time and gain when metering, and the scene that needs to move the object quickly, the exposure time should not be set too long to avoid motion smear, if you care For noise performance, when the brightness is low, a longer exposure time can be used first and then the gain can be increased.

Step 3. According to different ambient brightness (LV), set the target brightness of AE and select high/low light priority. If you care about the details of the bright part, you should use high light priority to avoid overexposure of bright areas. In backlit scenes, you can choose low light priority , can improve the performance of dark parts to avoid too dark characters.

Step 4. If the screen flickers periodically, you can turn on the anti-flicker function and select an appropriate anti-flicker frequency to reduce the flicker phenomenon, but if the exposure time is too short (60HZ: shorter than 8333us, 50Hz: shorter than 10000us), even the anti-flicker The function is turned on, but the flickering cannot be avoided.

Step 5. According to the brightness of the environment, you can customize the upper and lower limits of the convergence brightness of long and short detection AE. In outdoor scenes during the day, the upper and lower limits can be set higher, and in night scenes, the upper and lower limits can be set lower. It is recommended that the upper and lower limit intervals between adjacent LVs should not differ too much, so as to avoid flickering caused by AE convergence. The range of the upper and lower limit intervals set will affect the result of AE automatically adjusting the convergence brightness (long detection and dark parts are brightened, Short detection and darkening the bright part), the smaller the set range, the smaller the range that AE can adjust.

---End