
CV181x Screen Docking Guide

Version: 1.2.2

Release date: 2022-06-23

Copyright © 2020 CVITEK Co., Ltd. All rights reserved.
No part of this document may be reproduced or transmiited in any form or by any means
without prior written consent of CVITEK Co., Ltd.

Screen Docking Guide CONTENTS

Contents

1 Disclaimer 2

2 MIPI DSI 3
2.1 Environment preparation . 3

2.1.1 Introduction of MIPI DSI screen interface 3
2.1.2 Hardware Connection Confirmation . 4

2.2 Configure MIPI Screen . 4
2.2.1 Configuring MIPI Screen in u-boot . 4

2.2.1.1 Configuring MIPI Tx Device Properties 5
2.2.1.2 Configuring Screen Initialization Sequence 9
2.2.1.3 Adding Reference to the Header File 11
2.2.1.4 Configuring RESET pin of MIPI Screen 11
2.2.1.5 Configuring MIPI Screen POWER pin 12
2.2.1.6 Configure MIPI Screen BACKLIGHT pin 13
2.2.1.7 Configuring u-boot Environment Variables 14
2.2.1.8 Changing Logo Image . 14
2.2.1.9 Compiling and Burning Verification 14

2.2.2 Configuring MIPI Screen in Kernel . 15
2.2.2.1 Configuring MIPI Tx Device Properties 16
2.2.2.2 Configuring Screen Initialization Sequence 16
2.2.2.3 Add a Reference to the Header File 16
2.2.2.4 Configuring MIPI Screen RESET, POWER, BACKLIGHT pins . 16
2.2.2.5 Compiling and Verificating . 18

3 LVDS 20
3.1 Environment Preparation . 20

3.1.1 LVDS Screen Docking Instruction . 20
3.1.2 Hardware Connection Confirmation . 21

3.2 Configure LVDS Screen . 21
3.2.1 Configure LVDS Screen in u-boot . 21

3.2.1.1 Configure LVDS Device Properties 22
3.2.1.2 Adding Reference to the Header File 24
3.2.1.3 Configure the BACKLIGHT pin of LVDS Screen 25
3.2.1.4 Configure u-boot Environment Variables 25
3.2.1.5 Changing Logo Image . 25
3.2.1.6 Compiling and Burning Verification 25

3.2.2 Configure LVDS in Kernel . 26
3.2.2.1 Configure LVDS Device Properties 26
3.2.2.2 Add a Reference to the Header File 26
3.2.2.3 Configure the BACKLIGHT pins of LVDS screen 27
3.2.2.4 Compiling and Verificating . 27

i

Screen Docking Guide CONTENTS

Revision History

Revision Date Description
0.1 2021/04/20 Initial version
1.1.1 2021/06/11 Modify some typo and description
1.2.0 2021/10/26 Revision update
1.2.1 2022/02/07 Revision update
1.2.1.0 2022/06/15 Update for CV181x
1.2.2 2022/06/23 Revision update

1

Screen Docking Guide CHAPTER 1. DISCLAIMER

1 Disclaimer

Terms and Conditions
The document and all information contained herein remain the CVITEK Co., Ltd’s (
“CVITEK”) confidential information, and should not disclose to any third party or use it in
any way without CVITEK’s prior written consent. User shall be liable for any damage and
loss caused by unauthority use and disclosure.
CVITEK reserves the right to make changes to information contained in this document at any
time and without notice.
All information contained herein is provided in “AS IS”basis, without warranties of any kind,
expressed or implied, including without limitation mercantability, non-infringement and fitness
for a particular purpose. In no event shall CVITEK be liable for any third party’s software
provided herein, User shall only seek remedy against such third party. CVITEK especially
claims that CVITEK shall have no liable for CVITEK’s work result based on Customer’s
specification or published shandard.

Contact Us

Address Building 1, Yard 9, FengHao East Road, Haidian District, Beijing, 100094,
China

Building T10, UpperCoast Park, Huizhanwan, Zhancheng Community, Fuhai
Street, Baoan District, Shenzhen, 518100, China

Phone +86-10-57590723 +86-10-57590724

Website https://www.sophgo.com/

Forum https://developer.sophgo.com/forum/index.html

2

https://www.sophgo.com/
https://developer.sophgo.com/forum/index.html

Screen Docking Guide CHAPTER 2. MIPI DSI

2 MIPI DSI

Overview

The Display Serial Interface (DSI) is a high-speed serial interface defined by Mobile Industry
Processor Interface alliance(MIPI Alliance), which is mainly used for the connection between
processor and display module.

This document describes how to develop and debug MIPI LCD screen on CVITEK processor
solution to help customers develop MIPI LCD business orderly and quickly.

2.1 Environment preparation

2.1.1 Introduction of MIPI DSI screen interface
MIPI DSI screen generally has the following signals, as shown in the figure.

• MIPI clock(CLK)

• MIPI data(DATA), can be up to 4Lane(can only be 1/2/4Lane)

• Backlight control signal(BACKLIGHT)

• Reset pin (RESET)

• Screen power supply(POWER)

3

Screen Docking Guide CHAPTER 2. MIPI DSI

Fig. 2.1: Connection diagram of MIPI DSI interface

2.1.2 Hardware Connection Confirmation
Check the hardware connection and make sure there is no abnormal condition. Some specific pin
differences need to be confirmed by referring to the specifications and circuit schematic provided
by the screen manufacturer.

2.2 Configure MIPI Screen
According to the content of environment preparation in the previous section, the configuration
of screen porting is understood in the interface and connection. In this chapter, software config-
uration is described when the screen is porting.

CVITEK has two methods for MIPI screen docking, which are screen initialized in u-boot and
kernel respectively. The difference is that after initialization in u-boot, the user’s logo image can
be displayed after booting, while products with screen basically have the need to display logo. In
practical application, choose one of the two according to the demand.

2.2.1 Configuring MIPI Screen in u-boot
The MIPI screen is configured in u-boot by the command showlogo developed by CVITEK. After
the device is powered on, press Enter to enter the u-boot command line interface, the command
showlogo（it might be different per boards）can be seen after the command printenv is excuted,
bootcmd will execute the command to initialize the screen and display the logo before booting
the kernel.

Example：

showlogo=mmc dev 0;mmc read 0x84080000 0xA000 0x400; cvi_jpeg 0x84080000 0x81800000
0x80000; startvo 0 8192 0;startvl 0 0x84080000 0x81800000 0x80000 32;setvobg 0 0xffffffff

4

Screen Docking Guide CHAPTER 2. MIPI DSI

This document focuses on the initialization part of the screen, and for details of logo display,
please refer to 《CVITEK Startup Screen User Guide》. The initialization part of the screen is
implemented in “startvo 0 81920”.

2.2.1.1 Configuring MIPI Tx Device Properties

According to the screen specification, the configuration header file of each screen is implemented
and placed in the path

u-boot/include/cvi_panels.h, customers can add their own screen header files by referring to
other header file templates.

combo_dev_cfg_s structure definition

struct combo_dev_cfg_s {

unsigned int devno;

enum mipi_tx_lane_id lane_id[LANE_MAX_NUM];

enum output_mode_e output_mode;

enum video_mode_e video_mode;

enum output_format_e output_format;

struct sync_info_s sync_info;

unsigned int pixel_clk;

bool lane_pn_swap[LANE_MAX_NUM];

};

5

Screen Docking Guide CHAPTER 2. MIPI DSI

Member name Description
devno MIPI Tx device number,default to 0
lane_id The corresponding relationship between the lane numbers of

the host controller and the screen , fill in -1 for the unused
lane.
There are 5 lanes in total, which represent
MIPI_TX_0~MIPI_TX_4 of the host controller in se-
quence. The actual content should be filled in according to
the MIPI screen number corresponding to the screen.
For example, if the first member is MIPI_TX_0 of the
host controller, check the circuit schematic and fill in
MIPI_TX_LANE_3 according to the corresponding MIPI
lane3 in screen.
An incorrect corresponding relationship will not light up the
screen.

output_mode MIPI Tx output mode,default to OUT-
PUT_MODE_DSI_VIDEO

video_mode MIPI Tx video mode,default to BURST_MODE
output_format MIPI Tx output format,default to

OUT_FORMAT_RGB_24_BIT
sync_info Synchronization information of MIPI Tx device
pixel_clk Pixel clock (unit: KHz).

Calculation formula：
pixel_clk=(htotal*vtotal)*fps/1000
In which：
htotal=vid_hsa_pixels+ vid_hbp_pixels+ vid_hfp_pixels+
vid_hline_pixels
vtotal= vid_vsa_lines+ vid_vbp_lines+ vid_vfp_lines+
vid_active_lines
fps: frame rate,default to 60
.Deducing lane_clk from pixel_clk, we can get the transform
equation:
lane_clk= pixel_clk*24/4/2(24 means that each pixel of
RGB888 takes up 24bits, 4 means that 4 data lanes are used,
and 2 means that MIPI_CLK is triggered by double edge)

lane_pn_swap Whether Lane P/N pole of MIPI Tx swaps
true：swap
false: no swapping

sync_info(synchronization information of MIPI Tx device) in combo_dev_cfg_s is difficult to
configure. The configuration method is described in detail below. Generally, the reference values
will be filled in according to the specifications provided by the screen manufacturer, and the
further problems should be adjusted according to the phenomenon.

sync_info_s structure definition

struct sync_info_s {

unsigned short vid_hsa_pixels;
(continues on next page)

6

Screen Docking Guide CHAPTER 2. MIPI DSI

(continued from previous page)

unsigned short vid_hbp_pixels;

unsigned short vid_hfp_pixels;

unsigned short vid_hline_pixels;

unsigned short vid_vsa_lines;

unsigned short vid_vbp_lines;

unsigned short vid_vfp_lines;

unsigned short vid_active_lines;

bool vid_vsa_pos_polarity;

bool vid_hsa_pos_polarity;

};

Member name Description
vid_hsa_pixels horizontal sync active(HSA). Unit: pixel
vid_hbp_pixels horizontal back porch(HBP). Unit: pixel
vid_hfp_pixels Horizon front porch(HFP). Unit: pixel
vid_hline_pixels Horizontal active region(HACT). Unit: pixel
vid_vsa_lines Vertical Sync Active(VSA). Unit: line
vid_vbp_lines Vertical Back Porch (VBP). Unit: line
vid_vfp_lines Vertical front porch(VFP). Unit: line
vid_active_lines Vertical Active region(VACT). Unit: line
vid_vsa_pos_polarity Polarity of vertical active signal, with 0 as high effective and

1 as low effective
vid_hsa_pos_polarity Polarity of horizontal active signal, with 0 as high effective and

1 as low effective

Sketch map of MIPI pixel area under MIPI DSI protocol

7

Screen Docking Guide CHAPTER 2. MIPI DSI

hs_settle_s structure definition

struct hs_settle_s {

unsigned char prepare;

unsigned char zero;

unsigned char trail;

};

Member Name Description
prepare MIPI Tx prepare signal,default value: 6
zero MIPI Tx zero signal,default value: 32
trail MIPI Tx trail signal,default value: 1

Fig. 2.2: MIPI Tx Sequence Diagram

Example：

8

Screen Docking Guide CHAPTER 2. MIPI DSI

const struct combo_dev_cfg_s dev_cfg = {
.devno = 0,
.lane_id = {MIPI_TX_LANE_3, MIPI_TX_LANE_0, MIPI_TX_LANE_CLK, MIPI_TX_LANE_2,

↪→ MIPI_TX_LANE_1},
.lane_pn_swap = {false, false, false, false, false},
.output_mode = OUTPUT_MODE_DSI_VIDEO,
.video_mode = BURST_MODE,
.output_format = OUT_FORMAT_RGB_24_BIT,
.sync_info = {

.vid_hsa_pixels = 30,

.vid_hbp_pixels = 100,

.vid_hfp_pixels = 100,

.vid_hline_pixels = 800,

.vid_vsa_lines = 4,

.vid_vbp_lines = 16,

.vid_vfp_lines = 10,

.vid_active_lines = 1280,

.vid_vsa_pos_polarity = false,

.vid_hsa_pos_polarity = true,
},
.pixel_clk = 80958,

};

const struct hs_settle_s hs_timing_cfg = { .prepare = 6, .zero = 32, .trail = 1␣
↪→};

2.2.1.2 Configuring Screen Initialization Sequence

The screen generally has initialization process. MIPI LCD screen sends the specified type of data
package through MIPI Tx D-PHY interface. Initialization sequence is provided by the screen
manufacturer.

The initialization sequence of the screen generally includes pixel format, direction of data re-
freshing, Gamma configuration, etc. The specific meaning of each instruction in the initialization
sequence can be found in the specification by the screen manufacturer provided or Driver IC
Datasheet. Initialization sequence is sent through Data Lane0 in LP mode of MIPI Tx, and will
switch to HS mode afterwards.

dsc_instr structure definition

struct dsc_instr {

u8 delay;

u8 data_type;

u8 size;

u8 data[0x60];
(continues on next page)

9

Screen Docking Guide CHAPTER 2. MIPI DSI

(continued from previous page)

};

The initialization sequence provided by the screen manufacturer generally includes register ad-
dress and corresponding data. According to the sequence provided by the screen manufacturer,
the data type, data address and data should be filled.

Member Name Description
delay The milliseconds of delay after sending this command
data_type Write command data type, that is, the Data Type in DCS

(DisplayCommandSet). Select the data type according to the
number of data.
Type 1. When there is only the register address and no data,
the data type is 0x05;
Type 2: when there are a register address and a data, the data
type is as 0x15 or 0x23;
Type 3: when there are register addresses and the number of
data is greater than or equal to 2. Generally, the data type is
0x29 or 0x39.
It is common in general, please consult the screen manufac-
turer for the specific usage.

size The sum of register address and data number.
For example, if there is only one register address, fill in 1;
When there are one register address and one data, fill in 2;
one register address and two data, fill in 3, and so on.

data Pointer of command and data.
Register address and data. The first one must be the register
address, followed by the data, which can be absent or multiple.

Note: consult the manufacturer for the configuration of parameters of command data type. If it
is not supported by the manufacturer, it is recommended to fill in 0x05 when there is no data,
0x15 when there is one data, and 0x29 when there are multiple data.

Example：

static u8 data_xxxx_0[] = { 0xFF, 0x98, 0x81, 0x03 };

static u8 data_xxxx_1[] = { 0x01, 0x00 };

static u8 data_xxxx_2[] = {0x02, 0x00 };

......

static u8 data_xxxx_n[] = { 0x11 };

static u8 data_xxxx_n+1[] = { 0x29 };

const struct dsc_instr dsi_init_cmds[] = {

(continues on next page)

10

Screen Docking Guide CHAPTER 2. MIPI DSI

(continued from previous page)

{ .delay = 0, .data_type = 0x29, .size = 4, .data = data_xxxx_0 },

{ .delay = 0, .data_type = 0x15, .size = 2, .data = data_xxxx_1 },

{ .delay = 0, .data_type = 0x15, .size = 2, .data = data_xxxx_2 },

......

{ .delay = 120, .data_type = 0x05, .size = 1, .data = data_xxxx_n },

{ .delay = 20, .data_type = 0x05, .size = 1, .data = data_xxxx_n+1 },

}

2.2.1.3 Adding Reference to the Header File

Add a reference to the newly added and header file which is mentioned in the previous two sections
in u-boot/include/cvi_panels.h.

Example：

#ifdef MIPI_SCREEN_HX8394
#include "dsi_hx8394_evb.h"
static struct screen_desc_s screen_desc = {

.screen_name = "HX8394-720x1280",

.dev_cfg = &dev_cfg_hx8394_720x1280,

.hs_timing_cfg = &hs_timing_cfg_hx8394_720x1280,

.dsi_init_cmds = dsi_init_cmds_hx8394_720x1280,

.dsi_init_cmds_size = ARRAY_SIZE(dsi_init_cmds_hx8394_720x1280)
};
#endif

2.2.1.4 Configuring RESET pin of MIPI Screen

Add the control of RESET/POWER/BACKLIGHT in function mipi_tx_set_combo_dev_cfg
of u-boot/drivers/video/cvitek/cvi_mipi.c.

Generally RESET pin of MIPI screen uses the GPIO port. So we need to configure the GPIO
port and then reset the screen.

• Check the circuit schematic to get the pin name corresponding to the RESET pin.

• Find the GPIO group number and serial number corresponding to the pin according to
《CV181x_PINOUT_CN》.

• Revise the reset in vo node in 改 build/default/dts/cv181x/cv181x_base.dtsi to the corre-
sponding value.

• Configure the reset operation sequence of GPIO for RESET.

11

Screen Docking Guide CHAPTER 2. MIPI DSI

The reset operation of the screen needs to refer to the screen specification. If there is no reset
operation, or the reset timing does not match the requirements of the screen, or the level does not
match, the screen may not light up or work abnormally. Generally speaking, it is a high-low-high
level change. Please refer to the screen specification for details.

Example：Suppose the RESET pin of the screen is GPIOE 2, the reset voltage is low. The revision
in 改 build/default/dts/cv181x/cv181x_base.dtsi is as follow:

reset-gpio = <&porte 2 GPIO_ACTIVE_LOW>;
The configurations are as follow：
gpio_request_by_name(dev, "reset-gpio", 0, &priv->ctrl_gpios.disp_reset_gpio,␣
↪→GPIOD_IS_OUT | GPIOD_IS_OUT_ACTIVE);
the operations are as follow：
dm_gpio_set_value(&ctrl_gpios.disp_reset_gpio, ctrl_gpios.disp_reset_gpio.flags␣
↪→& GPIOD_ACTIVE_LOW ? 0 : 1);
mdelay(10);
dm_gpio_set_value(&ctrl_gpios.disp_reset_gpio, ctrl_gpios.disp_reset_gpio.flags␣
↪→& GPIOD_ACTIVE_LOW ? 1 : 0);
mdelay(10);
dm_gpio_set_value(&ctrl_gpios.disp_reset_gpio, ctrl_gpios.disp_reset_gpio.flags␣
↪→& GPIOD_ACTIVE_LOW ? 0 : 1);
mdelay(100);

The RESET pin will perform a high-low-high level change after these steps.

2.2.1.5 Configuring MIPI Screen POWER pin

Generally, GPIO function is also used for POWER pin of MIPI screen. The power supply status
of MIPI screen usually can be controlled by pulling up or down the pin level. Some screens may
be powered directly so that there is no need to control in software.

• Configuration is consistent with the RESET pin mentioned in the previous section

Example：

Suppose that the POWER control pin of the screen is GPIOE 0. The revision in
build/default/dts/cv181x/cv181x_base.dtsi is as follow:

power-ct-gpio = <&porte 0 GPIO_ACTIVE_HIGH>;
The POWER can be delete directly if there is no need to configure.
The configurations are as follow：
gpio_request_by_name(dev, "power-ct-gpio", 0, &priv->ctrl_gpios.disp_power_ct_
↪→gpio, GPIOD_IS_OUT | GPIOD_IS_OUT_ACTIVE);
the operation is as follow：
dm_gpio_set_value(&ctrl_gpios.disp_power_ct_gpio, ctrl_gpios.disp_power_ct_gpio.
↪→flags & GPIOD_ACTIVE_LOW ? 0 : 1);

12

Screen Docking Guide CHAPTER 2. MIPI DSI

2.2.1.6 Configure MIPI Screen BACKLIGHT pin

The BACKLIGHT of MIPI screen can be configured to GPIO or PWM.

Configure as GPIO

• The configuration metheod is consistent with the configuration method of RESRT pin
mentioned in the lat section.

Example：

Suppose the PWM pin of the screen is GPIOE 1 and the working voltage is high. The revision
in build/default/dts/cv181x/cv181x_base.dtsi is as follow：

pwm-gpio = <&porte 1 GPIO_ACTIVE_HIGH>;
The POWER can be delete directly if there is no need to configure.
The configurations are as follow：
gpio_request_by_name(dev, "pwm-gpio", 0, &priv->ctrl_gpios. disp_pwm_gpio,␣
↪→GPIOD_IS_OUT | GPIOD_IS_OUT_ACTIVE);
the operation is as follow：
dm_gpio_set_value(&ctrl_gpios.disp_pwm_gpio, ctrl_gpios.disp_pwm_gpio.flags &␣
↪→GPIOD_ACTIVE_LOW ? 0 : 1);

Configure as PWM

Generally, the BACKLIGHT of MIPI screen can adjust brightness via PWM.

• Check the circuit schematic to get the pin name corresponding to the BACKLIGHT pin.

• In function“board_init”of u-boot/board/cvitek/cv181x/board.c configure the multiplexing
function of BACKLIGHT pin as PWM function.

• According to the register information in the chapter of peripheral PWM in《CV181x Pre-
liminary Datasheet》, configure the periods, duty cycle and enable of PWM.

Base address of PWM is as follows, refer to《CV181x Preliminary Datasheet》for other register
information. CV181x has 4 groups of PWM with 4 channels in each group.

PWM0 0x03060000
PWM1 0x03061000
PWM2 0x03062000
PWM3 0x03063000

Note: PWM0~3 here is the PWM group number, while the circuit schematic or pinlist shows
PWM0~PWM15. If you see PWM1, it corresponds to PWM0_1, the first channel of group 0 in
the above table.

Example：

Suppose BACKLIGHT pin of the screen is PWM1,

_reg_write(0x03060008, 0x3E8);// ()PWM1 low-level counts (unit: NS)

13

Screen Docking Guide CHAPTER 2. MIPI DSI

_reg_write(0x0306000C, 0xF4240);// Periodic count number of PWM1 square wave(unit: ns)

_reg_write(0x03060044, 0x02);// Enable PWM output

2.2.1.7 Configuring u-boot Environment Variables

Modify the parameters of u-boot environment variables in u-boot/include/configs/cv181x-asic.h

Example：

define SHOWLOGOCMD LOAD_LOGO CVI_JPEG START_VO START_VL SET_VO_BG

LOAD_LOGO reads the picture from the MISC partition to the DRAM, CVI_JPEG parses the
picture to the specified position, START_VO and START_VL turn on the VO and display the
logo in the center position, SET_VO_BG sets the VO background color, and other areas of the
screen except logo are filled with this color.

2.2.1.8 Changing Logo Image

Place the customer’s logo image in the path build/tools/common/bootlogo/, and executing
build_all will copy the logo to image generation path.

Note: The I80 screen needs 24bit BMP pictures and the rest needs YUV420 format jpg.

2.2.1.9 Compiling and Burning Verification

After the steps above are completed, recompile and burn the new u-boot. Power on, press Enter
to enter the u-boot command line interface. Excute the command run showlogo, and you can see
the logo image on the screen if the process goes well. If the logo is not displayed, please confirm
the following steps.

• Make sure the backlight is on.

• Make sure the RESET pin level has reached the expected level.

• Confirm that the power supply of the screen is normal.

• Execute mw 0x0a088094 0x0701000a and output the test pattern of VO. If the screen is
initialized successfully, you will see the colorbar.

The figure below shows the test pattern register

If any of the exceptions above are found, please go back to check whether the previous process is
set correctly and meets the expectation.

14

Screen Docking Guide CHAPTER 2. MIPI DSI

If no abnormality is found in the above, it is recommended to check the Driver IC datasheet or
directly consult the screen manufacturer how to turn on the screen BIST mode, usually it is to
adjust the register value in the initialization sequence, and the colorbar will be displayed.

If the BIST mode is abnormal, you need to check whether the MIPI Lane sequence, RESET,
POWER, PWM, etc. are configured correctly, and use the multimeter / oscilloscope to confirm
that the circuit level status meets the expectation. If all meet the expectation, the problem may
be the screen itself, please consult the screen manufacturer.

If BIST is normal, it means that the configuration above is correct and the hardware circuit is
normal. In this case, it is usually necessary to adjust parameters in sync_info_s.

2.2.2 Configuring MIPI Screen in Kernel
The method of configuring MIPI screen in kernel is almost the same as that in u-boot, but the
implementation process is different. You can choose this method when you don’t need to display
the logo.

In addition, you can also use kernel mode to debug first, and then port to u-boot to avoid burning
u-boot frequently.

Fig. 2.3: Basic block diagram of docking MIPI screen in kernel

15

Screen Docking Guide CHAPTER 2. MIPI DSI

2.2.2.1 Configuring MIPI Tx Device Properties

According to the screen specification, the configuration header file of each screen is implemented
and placed in the path middleware/component/panel/cv181x/. Customers can add their own
screen header file by referring to other header file templates.

Please refer to section 2.2.1.1

2.2.2.2 Configuring Screen Initialization Sequence

Refer to section 2.2.1.2

2.2.2.3 Add a Reference to the Header File

Add a reference to the newly added header file. Add a reference to the newly added header file
mentioned in the previous two sections in middleware/sample/mipi_tx/sample_dsi_panel.h

Example：

#ifdef MIPI_PANEL_HX8394
#include "dsi_hx8394_evb.h"
static struct panel_desc_s panel_desc = {

.panel_name = "HX8394-720x1280",

.dev_cfg = &dev_cfg_hx8394_720x1280,

.hs_timing_cfg = &hs_timing_cfg_hx8394_720x1280,

.dsi_init_cmds = dsi_init_cmds_hx8394_720x1280,

.dsi_init_cmds_size = ARRAY_SIZE(dsi_init_cmds_hx8394_720x1280)
};
#endif

2.2.2.4 Configuring MIPI Screen RESET, POWER, BACKLIGHT pins

Method 1：

Find the corresponding DTS file in path linux/arch/arm/boot/dts/cvitek/ and configure the
GPIO information of MIPI TX. If there is no such pin, you can skip it directly.

Example：

mipi_tx {

compatible = "cvitek,mipi_tx";

clocks = <&clk CV182X_CLK_DSI_MAC_VIP>, <&clk CV182X_CLK_DISP_VIP>;

clock-names = "clk_dsi", "clk_disp";

reset-gpio = <&portb 5 GPIO_ACTIVE_LOW>;

pwm-gpio = <&portb 3 GPIO_ACTIVE_HIGH>;
(continues on next page)

16

Screen Docking Guide CHAPTER 2. MIPI DSI

(continued from previous page)

power-ct-gpio = <&portb 4 GPIO_ACTIVE_HIGH>;

};

Instruction：

pwm-gpio = <&portb 3 GPIO_ACTIVE_HIGH>;

For the convenience of debugging, you can use GPIO function to control the backlight first, and
remember not to configure function of pinmux as PWM in u-boot, otherwise you may not be able
to control it.

Later, if you have to adjust the brightness for your needs, you can then configure the function of
pinmux as PWM in u-boot, delete this PWM configuration in dts, and control it in app by using
PWM.

After the system is booted, the method of loading MIPI Tx driver:

insmod /mnt/system/ko/cvi_mipi_tx.ko

In this way, when the driver is loaded, it will automatically apply for these GPIO resources
according to the GPIO information in dts and initialize them to the corresponding level state.

Method 2：

There is no need to modify the kernel dts file.

After the system is booted, the method of loading MIPI Tx driver:

insmod /mnt/system/ko/cvi_mipi_tx.ko gpio=424,0,425,1,452,1

The three GPIOs are RESET, POWER and PWM in sequence.

When the driver is loaded, the driver will automatically apply for the GPIO resources corre-
sponding to the GPIO numbers by using the information in the gpio parameters preferentially,
and initialize to the subsequent level state. If there is no GPIO parameter, the driver will apply
for GPIO resources according to the GPIO information in dts. If there is no such pin, the GPIO
number and level status can be written to -1.

Similarly, for the convenience of debugging, the backlight can be controlled by GPIO function
first, and function of pinmux should not be configured as PWM in u-boot. Later, if we need to
adjust the brightness, we need configure the function of pinmux as PWM in u-boot. At the same
time, we control it in app by using PWM, and write the third GPIO number and level state as
-1.

Method 3：

Control these GPIOs in user space directly.

Example：Suppose reset：GPIOB5，pwm：GPIOB3，power：GPIOB4，the following operations
is needed：

1. echo 453 > /sys/class/gpio/export
echo 451 > /sys/class/gpio/export
echo 452 > /sys/class/gpio/export

2. echo out > /sys/class/gpio/gpio453/direction
(continues on next page)

17

Screen Docking Guide CHAPTER 2. MIPI DSI

(continued from previous page)

echo out > /sys/class/gpio/gpio451/direction
echo out > /sys/class/gpio/gpio452/direction

3. echo 1 > /sys/class/gpio/gpio453/value
echo 1 > /sys/class/gpio/gpio451/value
echo 1 > /sys/class/gpio/gpio452/value
echo 0 > /sys/class/gpio/gpio453/value
echo 1 > /sys/class/gpio/gpio453/value

Instruction：

For the convenience of debugging, you can use GPIO function to control the backlight first, and
remember not to configure function of pinmux as PWM in u-boot, otherwise you may not be able
to control it.

Later, if you have to adjust the brightness for your needs, you can then configure the function of
pinmux as PWM in u-boot, and control it in app by using PWM.

2.2.2.5 Compiling and Verificating

Execute build_middleware to compile middleware, and executable file sample_dsi will be gen-
erated in the path middleware/sample/mipi_tx/. The program does the same thing as what
“startvo 0 65536 0”does in u-boot. It switches to LP mode, sets MIPI Tx device properties,
sends initialization sequence to screen through Data Lane0, and then switches back to HS mode.

Copy sample_dsi to device and run it.

Description：

If the initial level of RESET pin is set to low, a high-low-high timing change is needed.

If the initial level of RESET pin is set to high, a low-high-low timing change is needed.

Enable VO test pattern, register is as shown in the figure below. You will see the colorbar after
executing devmem 0x0a088094 32 0x0701000a.

If the colorbar does not display normally, please check whether the previous process is set correctly
and meets the expectation.

If no abnormality is found in the previous process, it is recommended to check the Driver IC
datasheet or directly consult the screen manufacturer about how to open the BIST mode of the
screen. Usually, it is to adjust a register value in the initialization sequence, and colorbar will be
displayed.

18

Screen Docking Guide CHAPTER 2. MIPI DSI

If the BIST mode is abnormal, you need to check whether the MIPI Lane sequence, RESET,
POWER, PWM, etc. are configured correctly, and use the multimeter/ oscilloscope to confirm
that whether the circuit level status meets the expectation. If all meet the expectation, it may
be the problem of the screen itself, please consult the screen manufacturer.

If BIST is normal, it means that the configuration above is correct and the hardware circuit is
normal. In this case, it is usually necessary to adjust sync_info_s.

19

Screen Docking Guide CHAPTER 3. LVDS

3 LVDS

Overview

Low Voltage Differential Signal (LVDS) is a type of video signal transmission mode developed by
National Semiconductor Corporation (NS) in 1994 to overcome the disadvantages of high power
consumption and electromagnetic interference (EMI) in transmitting high-bit-rate data using
TTL voltage levels. LVDS interface, also known as RS644 bus interface, is an electrical standard
widely used in LCD screen interfaces. The overall LVDS screen is similar to MIPI, but there are
some differences. This section introduces how to develop and debug LVDS LCD screens on the
CVITEK processor solution.

3.1 Environment Preparation

3.1.1 LVDS Screen Docking Instruction
LVDS screen generally has the following signals, as shown in the figure:

• LVDS clock（CLK）

• LVDS data（DATA）（single-ended 6bit：3 lane，single-ended 8bit：4 lane，single-ended
10bit：5 lane，double-ended 6bit：6 lane，double-ended 6bit：8 lane，double-ended 6bit：
10 lane，Now it only supports single-ended 6bit and single-ended 8bit）

• Backlight control signal（BACKLIGHT）

20

Screen Docking Guide CHAPTER 3. LVDS

Fig. 3.1: Connection diagram of LVDS interface

3.1.2 Hardware Connection Confirmation
Check the hardware connection and make sure there is no abnormal condition. Some specific pin
differences need to be confirmed by referring to the specifications and circuit schematic provided
by the panel manufacturer.

3.2 Configure LVDS Screen
Based on the content of the previous section on environmental preparation, the configuration of
the screen interface and wiring has been understood. In this section, we will explain the software
configuration required for screen interface.

CVITEK has two solutions for LVDS screen interface, similar to MIPI screens, which are initial-
ized in u-boot and kernel respectively. In actual applications, either one can be chosen according
to the requirements.

3.2.1 Configure LVDS Screen in u-boot
To configure a MIPI screen in u-boot, the CVITEK-developed‘showlogo’command is used. After
the device is powered on, enter the u-boot command line by pressing enter, and the ‘printenv’
command can display the ‘showlogo’command. The ‘bootcmd’command will execute this
command to initialize and display the screen logo before booting the kernel.

Example:

showlogo=mmc dev 0;mmc read 0x84080000 0xA000 0x400; cvi_jpeg 0x84080000␣
↪→0x81800000 0x80000; startvo 0 2048 0;startvl 0 0x84080000 0x81800000 0x80000␣
↪→16;setvobg 0 0xffffffff

21

Screen Docking Guide CHAPTER 3. LVDS

Note: Single-ended 6-bit is 1024, single-ended 8-bit is 2048, and single-ended 10-bit is 4096.

This document focuses on the initialization part of the screen, and for displaying the logo, please
refer to the 《CVITEK Startup Screen User Guide》. The initialization part of the screen is
implemented in ‘startvo 0 2048 0’.

3.2.1.1 Configure LVDS Device Properties

According to the screen specification, the configuration header file of each screen is implemented
and placed in the path

u-boot/include/cvi_panels/, customers can add their own panel header files by referring to other
header file templates.

cvi_lvds_cfg_s structure definition

struct cvi_lvds_cfg_s {
enum LVDS_OUT_BIT out_bits;
enum LVDS_MODE mode;
unsigned char chn_num;
bool data_big_endian;
enum lvds_lane_id lane_id[LANE_MAX_NUM];
bool lane_pn_swap[LANE_MAX_NUM];
struct sync_info_s sync_info;
unsigned short u16FrameRate;
unsigned int pixelclock;

};

22

Screen Docking Guide CHAPTER 3. LVDS

Member name description
out_bits LVDS_OUT_6BIT、LVDS_OUT_8BIT、

LVDS_OUT_10BIT
mode LVDS_MODE_JEIDA、LVDS_MODE_VESA，it’s usually

set to LVDS_MODE_VESA
chn_num Channel number 1、2，now the processor only supports channel

number 1
data_big_endian The byte order for sending data，it’s usually set to false
Lane_id The correspondence between the Lane numbers of the host and

the screen end, with unused Lanes filled in with -1. There are a
total of 5 members, representing the VO_LVDS_LANE_0 ~
VO_LVDS_LANE_4 of the host sequentially, and the actual
content needs to be filled in according to the LVDS Lane num-
bers corresponding to the screen end. For example, if the first
member is Host Lane 0, according to the circuit schematic, it
corresponds to Screen Lane 3, and thus VO_LVDS_LANE_3
should be filled in. Incorrect correspondence will result in the
screen not lighting up.

lane_pn_swap Whether the Lane P/N poles of LVDS are exchanged
true：exchange
false:don’t exchange

sync_info The synchronization information of LVDS devices
pixel_clk Pixel clock (unit: KHz).

Calculation formula：
pixel_clk=(htotal*vtotal)*fps/1000
In which：
htotal=vid_hsa_pixels+ vid_hbp_pixels+ vid_hfp_pixels+
vid_hline_pixels
vtotal= vid_vsa_lines+ vid_vbp_lines+ vid_vfp_lines+
vid_active_lines
fps: frame rate,default to 60
Deducing lane_clk from pixel_clk, we can get transform equa-
tion：
lane_clk= pixel_clk*24/4/2(24 means that each pixel of
RGB888 (each pixel consists of three channels which take up
8 bit respectively) takes up 24bits, 4 means that 4 data lanes
are used, and 2 means that MIPI_CLK is triggered by double
edge)

example：

struct cvi_lvds_cfg_s lvds_ek79202_cfg = {
.mode = LVDS_MODE_VESA,
.out_bits = LVDS_OUT_8BIT,
.chn_num = 1,
.lane_id = {VO_LVDS_LANE_0, VO_LVDS_LANE_1, VO_LVDS_LANE_2, VO_LVDS_LANE_3,␣

↪→VO_LVDS_LANE_CLK},
.lane_pn_swap = {false, false, false, false, false},
.sync_info = {

(continues on next page)

23

Screen Docking Guide CHAPTER 3. LVDS

(continued from previous page)

.vid_hsa_pixels = 10,

.vid_hbp_pixels = 88,

.vid_hfp_pixels = 62,

.vid_hline_pixels = 1280,

.vid_vsa_lines = 4,

.vid_vbp_lines = 23,

.vid_vfp_lines = 11,

.vid_active_lines = 800,

.vid_vsa_pos_polarity = 0,

.vid_hsa_pos_polarity = 0,
},
.u16FrameRate = 60,
.pixelclock = 72403,

};

sync_info_s structure definition

Similar to MIPI, please refer to 2.2.1.1.

LVDS Sequence Diagram

3.2.1.2 Adding Reference to the Header File

Add a reference to the newly added header file. In u-boot/include/cvi_panels.h, add a reference
to the newly added header file in the previous section.

example：

#if defined(LVDS_PANEL_EK79202)
#include "lvds_ek79202.h"
static struct panel_desc_s panel_desc = {

.lvds_cfg = &lvds_ek79202_cfg
(continues on next page)

24

Screen Docking Guide CHAPTER 3. LVDS

(continued from previous page)

};
#endif

3.2.1.3 Configure the BACKLIGHT pin of LVDS Screen

The BACKLIGHT of LVDS screen can be set to GPIO or PWM.

Configure as GPIO

It can be realized by modifying VO_GPIO_PWM_PORT、VO_GPIO_PWM_INDEX、
VO_GPIO_PWM_ACTIVE in build/boards/cv182x/cv18xx/u-boot/cvitek.h

Configure as PWM

Generally through PWM, this can achieve brightness adjustment. The implementation is similar
to the MIPI screen, please refer to 2.2.1.6.

3.2.1.4 Configure u-boot Environment Variables

The operation is similar to MIPI screen，please refer to 2.2.1.7.

3.2.1.5 Changing Logo Image

The operation is similar to MIPI screen，please refer to 2.2.1.8.

3.2.1.6 Compiling and Burning Verification

After the steps above are completed, recompile and burn the new u-boot. Power on, press Enter
to enter the u-boot command line interface. Excute the command run showlogo, and you can see
the logo image on the panel if the process goes well. If the logo is not displayed, please confirm
the following steps.

• Make sure the backlight is on.

• Confirm that the power supply of the panel is normal.

• Execute mw 0x0a088094 0x0701000a and output the VO test pattern. If the panel is
initialized successfully, you will see the colorbar.

The figure below shows the test pattern register

25

Screen Docking Guide CHAPTER 3. LVDS

If any of the exceptions above are found, please go back to check whether the previous process is
set correctly and meets the expectation.

If no abnormalities are found in the above steps, it is necessary to further check if the LVDS lane
order, PWM, and other configurations are correct, and confirm the circuit voltage status meets
the expectations using a multimeter/oscilloscope. If everything is as expected, it may be an issue
with the screen itself, and the screen manufacturer should be consulted.

If the configuration and hardware circuit are correct, it is usually necessary to adjust the param-
eters in sync_info_s.

3.2.2 Configure LVDS in Kernel
The method for configuring LVDS screen in kernel is almost the same as in u-boot, but the
implementation process is different. This method can be chosen when there is no need to display
the logo. In addition, you can also debug it with the kernel method first, and then transplant it
to u-boot to avoid frequent burning of u-boot.

3.2.2.1 Configure LVDS Device Properties

Based on the specification of the screen, implement the configuration header file for each screen
and place it in the path middleware/component/panel/cv182x/. Customers can refer to the other
header file templates to add their own panel header files. See section 3.2.1.1 for more details.

3.2.2.2 Add a Reference to the Header File

Add reference to the newly added header file. Add reference to the newly added header file in
middleware/component/panel/cv82x/lvds_panels.h as mentioned in section 3.2.1.1.

example：

#ifdef LVDS_PANEL_EK79202
#include "lvds_ek79202.h"
const VO_LVDS_ATTR_S *pstLvdsAttr = &lvds_ek79202_cfg;
#endif

26

Screen Docking Guide CHAPTER 3. LVDS

3.2.2.3 Configure the BACKLIGHT pins of LVDS screen

Find the corresponding header file under the path middleware/component/panel/cv82x/, and
configure the GPIO information for LVDS. If the pin is not available or controlled by the APP,
just leave it blank or assign gpio_num as -1.

example：

.backlight_pin = {

.gpio_num = GPIOE_02,

.active = GPIO_ACTIVE_HIGH,

},

Note：

For the convenience of debugging, the backlight can be controlled by GPIO first. Remember not
to configure pinmux as PWM function in u-boot first, otherwise it may not be controlled.

Later, if you need to adjust the brightness, configure the pinmux function as PWM in u-boot,
delete this configuration in the header file or assign gpio_num to -1, and control it with PWM
in the APP.

3.2.2.4 Compiling and Verificating

VDS will not display any image without running the APP when the logo is not enabled. The
initialization of the screen refer to

middleware/sample/common/sample_common_platform.c， ”stDefDispRect”and
“stDefImageSize”need to be amended to actual size of screen，revise stVoCon-
fig.stVoPubAttr.enIntfType to VO_INTF_LCD_24BIT（VO_INTF_LCD_18BIT、
VO_INTF_LCD_30BIT） ，revise stVoConfig.stVoPubAttr.enIntfSync to
VO_OUTPUT_1280x800_60，the rest parts refer to the implemention of SAM-
PLE_COMM_VO_FillIntfAttr and SAMPLE_COMM_VO_StartDev in middle-
ware/sample/common/sample_common_vo.c.

Running the CVI_VO_SetPubAttr function in the APP is the same as executing ‘startvo 0
2048 0’in u-boot, which initializes the LVDS screen and puts it into operation. If the screen still
cannot be displayed correctly, please refer to 3.2.1.6.

27

	Disclaimer
	MIPI DSI
	Environment preparation
	Introduction of MIPI DSI screen interface
	Hardware Connection Confirmation

	Configure MIPI Screen
	Configuring MIPI Screen in u-boot
	Configuring MIPI Tx Device Properties
	Configuring Screen Initialization Sequence
	Adding Reference to the Header File
	Configuring RESET pin of MIPI Screen
	Configuring MIPI Screen POWER pin
	Configure MIPI Screen BACKLIGHT pin
	Configure as GPIO
	Configure as PWM

	Configuring u-boot Environment Variables
	Changing Logo Image
	Compiling and Burning Verification

	Configuring MIPI Screen in Kernel
	Configuring MIPI Tx Device Properties
	Configuring Screen Initialization Sequence
	Add a Reference to the Header File
	Configuring MIPI Screen RESET, POWER, BACKLIGHT pins
	Compiling and Verificating

	LVDS
	Environment Preparation
	LVDS Screen Docking Instruction
	Hardware Connection Confirmation

	Configure LVDS Screen
	Configure LVDS Screen in u-boot
	Configure LVDS Device Properties
	Adding Reference to the Header File
	Configure the BACKLIGHT pin of LVDS Screen
	Configure as GPIO
	Configure as PWM

	Configure u-boot Environment Variables
	Changing Logo Image
	Compiling and Burning Verification

	Configure LVDS in Kernel
	Configure LVDS Device Properties
	Add a Reference to the Header File
	Configure the BACKLIGHT pins of LVDS screen
	Compiling and Verificating

