DL Ops&Models支持情况

以下是Deep Learning Framework的Ops和Models支持情况。 其中的INT8支持,指的是经过SOPHGO Calibration tool量化后的Ops和Models。

下面的表格中,未标注OK的Ops/Layer表示暂未支持,未标注OK的model表示暂未测试。

一般情况下,若用户model中所有的算子都包含在支持的算子中,则该model可以支持。 这里也列出了各个框架已经测试的model,供用户参考。

为了方便,我们在bmnetc/bmnett/bmnetm/bmnetp/bmnetd工具中提供了参数(–mode=check)来检查是否model 存在未支持的Float32算子,详情请见各个工具的说明。

Caffe支持情况

Caffe无版本限制,只要是Github上的官方开源版本即可。

Caffe已支持的层如下表所示:

Caffe Layer Support

Layer Name

Float32

INT8

AbaVal

OK

ArgMax

OK

OK

BN

OK

OK

BatchNorm

OK

OK

Bias

OK

OK

Concat

OK

OK

Convolution

OK

OK

Crop

OK

OK

Deconvolotion

OK

OK

DetectionOutput

OK

OK

ELU

OK

OK

Eltwise

OK

OK

Flatten

OK

OK

InnerProduct

OK

OK

Interp

OK

OK

LSTM

OK

Log

OK

Normalize

OK

OK

PRelu

OK

OK

PSROIPooling

OK

OK

PadChannel

OK

Permute

OK

OK

Pooling

OK

OK

Power

OK

Priorbox

OK

OK

ROIAlign

OK

ROIPooling

OK

OK

RPN

OK

OK

Relu

OK

OK

Reduction

OK

OK

Reorg

OK

OK

Reshape

OK

OK

Reverse

OK

Scale

OK

OK

ShuffleChannel

OK

OK

Sigmoid

OK

OK

Slice

OK

OK

Softmax

OK

OK

Split

OK

OK

TanH

OK

OK

Tile

OK

OK

Upsample

OK

OK

UpsampleCopy

OK

OK

Yolo

OK

OK

Yolov3DetectionOuput

OK

OK

Caffe已测试的model如下表所示:

Caffe Model Support

Model Name

Float32

INT8

Alexnet

OK

OK

Mtcnn

OK

OK

Googlenet v1/v2/v3

OK

OK

Mobilenet v1/v2/v3

OK

OK

Pose

OK

OK

r50

OK

OK

Resnet 18/34/50/101/152

OK

OK

Vggnet 16/19

OK

OK

Yolo v1/v2/v3

OK

OK

SSD

OK

OK

SSH

OK

OK

densenet

OK

OK

maskrcnn

OK

OK

inception

OK

OK

ICNet

OK

OK

Squeezenet

OK

OK

unet

OK

OK

deeplab_v2

OK

OK

vanface

OK

OK

shufflenet

OK

OK

segnet

OK

OK

dual

OK

OK

rfcn

OK

OK

faster_rcnn

OK

OK

landmark

OK

OK

pspnet

OK

OK

OCR_detection

OK

OK

Erfnet

OK

OK

Enet

OK

OK

TensorFlow支持情况

TensorFlow目前支持的版本为: <=2.6.0。

已支持的算子如下表所示(也可通过命令`python3 -m bmnett –op_list True`列出当前支持算子):

TensorFlow Ops Support

Ops Name

Float32

INT8

All

OK

Abs

OK

OK

Acos

OK

OK

Acosh

OK

OK

Add

OK

OK

AddV2

OK

OK

AddN

OK

OK

Any

OK

OK

ArgMax

OK

OK

ArgMin

OK

OK

Asin

OK

OK

Asinh

OK

OK

Assert

OK

OK

Atanh

OK

OK

AvgPool

OK

OK

BatchMatMul

OK

BatchMatMulV2

OK

BatchToSpaceND

OK

OK

BiasAdd

OK

OK

Cast

OK

OK

Ceil

OK

OK

Concat

OK

OK

ConcatV2

OK

OK

Conv2D

OK

OK

Conv2DBackpropInput

OK

OK

Conv3D

OK

OK

Conv3DBackpropInput

OK

OK

Cos

OK

OK

Cosh

OK

OK

CropAndResize

OK

OK

DepthToSpace

OK

OK

DepthwiseConv2dNative

OK

OK

Div

OK

OK

Elu

OK

OK

Enter

OK

Equal

OK

OK

Erf

OK

OK

Exit

OK

Exp

OK

OK

ExpandDims

OK

OK

Expm1

OK

OK

Fill

OK

OK

Floor

OK

OK

FloorMod

OK

OK

FloorDiv

OK

OK

FusedBatchNorm

OK

OK

FusedBatchNormV3

OK

OK

Gather

OK

GatherNd

OK

GatherV2

OK

Greater

OK

OK

GreaterEqual

OK

OK

Identity

OK

OK

IsFinite

OK

LeakyRelu

OK

OK

Less

OK

OK

LessEqual

OK

OK

Log

OK

OK

Log1p

OK

OK

LogSoftmax

OK

OK

LogicalAnd

OK

OK

LogicalNot

OK

OK

LogicalOr

OK

OK

LoopCond

OK

LRN

OK

OK

MatMul

OK

OK

Max

OK

OK

Maximum

OK

OK

MaxPool

OK

OK

Mean

OK

OK

Merge

OK

Minimum

OK

OK

MirrorPad

OK

OK

Mul

OK

OK

Neg

OK

OK

NextIteration

OK

NoOp

OK

OK

NonMaxSuppressionV2

OK

NonMaxSuppressionV3

OK

NonMaxSuppressionV5

OK

NotEqual

OK

OK

OneHot

OK

OK

OnesLike

OK

OK

Pack

OK

OK

Pad

OK

OK

PadV2

OK

OK

Placeholder

OK

OK

PlaceholderWithDefault

OK

OK

Pow

OK

OK

Prod

OK

OK

RandomUniform

OK

OK

RandomUniformInt

OK

OK

Range

OK

OK

Rank

OK

Reciprocal

OK

OK

Relu

OK

OK

Relu6

OK

OK

Reshape

OK

OK

ResizeBilinear

OK

OK

ResizeNearestNeighbor

OK

OK

ReverseV2

OK

OK

Round

OK

OK

Rsqrt

OK

OK

ScatterNd

OK

OK

Select

OK

OK

Shape

OK

OK

Sigmoid

OK

OK

Sin

OK

OK

Sinh

OK

OK

Size

OK

OK

Slice

OK

OK

Softmax

OK

OK

Softplus

OK

OK

Softsign

OK

OK

SpaceToBatchND

OK

OK

SpaceToDepth

OK

OK

Split

OK

OK

SplitV

OK

OK

Sqrt

OK

OK

Square

OK

OK

SquaredDifference

OK

OK

Squeeze

OK

OK

StopGradient

OK

OK

StridedSlice

OK

OK

Sub

OK

OK

Sum

OK

OK

Switch

OK

OK

Tan

OK

OK

Tanh

OK

OK

TensorArrayConcatV3

OK

TensorArrayGatherV3

OK

TensorArrayReadV3

OK

TensorArrayScatterV3

OK

TensorArraySizeV3

OK

TensorArraySplitV3

OK

TensorArrayV3

OK

TensorArrayWriteV3

OK

Tile

OK

OK

TopKV2

OK

OK

Transpose

OK

OK

Unpack

OK

OK

Where

OK

ZerosLike

OK

OK

TensorFlow已测试的model如下表所示:

TensorFlow Model Support

Model Name

Float32

INT8

Inception v1/v2/v3/v4

OK

OK

Mobilenet v1/v2

OK

OK

Resnet 50/101/152 v1/v2

OK

OK

Vggnet 16/19

OK

OK

Nasnet large/mobile

OK

OK

Pnasnet_mobile

OK

OK

SSD Resnet50 fpn

OK

SSD Mobile v2

OK

SSD Inception v2

OK

SSD Vgg 300

OK

SSD Mobilenet 300

OK

Segmentation

OK

Faster rcnn

OK

Bert

OK

Gan

OK

vqvae

OK

rl_apex

OK

Pedes Resnet50 V2

OK

Yolo v3

OK

OK

Ocr

OK

Mask_rcnn

OK

Espcn

OK

Lstm

OK

Fcnn

OK

Deeplabv3

OK

OK

EfficientNet

OK

OK

EfficientDet

OK

Pytorch支持情况

Pytorch目前支持的版本为: <= 1.8.x。

已支持的算子如下表所示(也可通过命令`python3 -m bmnetp –op_list True`列出当前支持算子):

Pytorch Ops Support

Ops Name

Float32

INT8

aten::_convolution

OK

OK

aten::abs

OK

OK

aten::abs_

OK

OK

aten::adaptive_avg_pool1d

OK

aten::adaptive_avg_pool2d

OK

aten::adaptive_max_pool1d

OK

aten::adaptive_max_pool2d

OK

aten::add

OK

OK

aten::add_

OK

OK

aten::addmm

OK

OK

aten::affine_grid_generator

OK

aten::alpha_dropout

OK

OK

aten::alpha_dropout_

OK

OK

aten::arange

OK

OK

aten::avg_pool1d

OK

OK

aten::avg_pool2d

OK

OK

aten::avg_pool3d

OK

aten::batch_norm

OK

OK

caffe2::BatchPermutation

OK

caffe2::BBoxTransform

OK

aten::bmm

OK

OK

aten::cat

OK

OK

aten::celu

OK

OK

aten::celu_

OK

OK

aten::chunk

OK

OK

aten::clamp

OK

OK

aten::clamp_

OK

OK

aten::clamp_max

OK

OK

aten::clamp_max_

OK

OK

aten::clamp_min

OK

OK

aten::clamp_min_

OK

OK

aten::clone

OK

OK

caffe2::CollectRpnProposals

OK

aten::constant_pad_nd

OK

OK

aten::contiguous

OK

OK

aten::copy

OK

OK

aten::cos

OK

OK

aten::cos_

OK

OK

aten::cumsum

OK

OK

aten::detach

OK

OK

aten::detach_

OK

OK

caffe2::DistributeFpnProposals

OK

OK

aten::div

OK

OK

aten::div_

OK

OK

aten::dropout

OK

OK

aten::dropout_

OK

OK

aten::einsum

OK

OK

aten::elu

OK

OK

aten::elu_

OK

OK

aten::embedding

OK

OK

aten::empty

OK

OK

aten::eq

OK

OK

aten::eq_

OK

OK

aten::erf

OK

OK

aten::erf_

OK

OK

aten::erfc

OK

OK

aten::erfc_

OK

OK

aten::exp

OK

OK

aten::exp_

OK

OK

aten::expand

OK

OK

aten::expand_as

OK

OK

aten::expm1

OK

OK

aten::expm1_

OK

OK

aten::feature_dropout

OK

OK

aten::feature_dropout_

OK

OK

aten::flatten

OK

OK

aten::floor

OK

OK

aten::floor_

OK

OK

aten::floor_divide

OK

OK

aten::floor_divide_

OK

OK

aten::gather

OK

OK

aten::ge

OK

OK

aten::ge_

OK

OK

aten::gelu

OK

OK

aten::gelu_

OK

OK

caffe2::GenerateProposals

OK

OK

aten::grid_sampler

OK

OK

aten::gru

OK

OK

aten::gt

OK

OK

aten::gt_

OK

OK

aten::hardshrink

OK

OK

aten::hardshrink_

OK

OK

aten::hardtanh

OK

OK

aten::hardtanh_

OK

OK

aten::index

OK

OK

aten::index_put

OK

OK

aten::index_put_

OK

OK

aten::instance_norm

OK

OK

aten::Int

OK

OK

aten::layer_norm

OK

OK

aten::le

OK

OK

aten::le_

OK

OK

aten::leaky_relu

OK

OK

aten::leaky_relu_

OK

OK

aten::lerp

OK

OK

aten::lerp_

OK

OK

aten::log

OK

OK

aten::log_

OK

OK

aten::log10

OK

OK

aten::log10_

OK

OK

aten::log1p

OK

OK

aten::log1p_

OK

OK

aten::log2

OK

OK

aten::log2_

OK

OK

aten::log_sigmoid

OK

OK

aten::log_softmax

OK

OK

aten::lstm

OK

OK

aten::lt

OK

OK

aten::lt_

OK

OK

aten::matmul

OK

OK

aten::max

OK

OK

aten::max_

OK

OK

aten::max_pool1d

OK

OK

aten::max_pool1d_with_indices

OK

OK

aten::max_pool2d

OK

OK

aten::max_pool2d_with_indices

OK

OK

aten::mean

OK

OK

aten::meshgrid

OK

OK

aten::min

OK

OK

aten::min_

OK

OK

aten::mm

OK

OK

aten::mul

OK

OK

aten::mul_

OK

OK

aten::narrow

OK

OK

aten::ne

OK

OK

aten::ne_

OK

OK

aten::neg

OK

OK

aten::neg_

OK

OK

aten::new_full

OK

OK

aten::new_zeros

OK

OK

aten::nonzero

OK

OK

aten::norm

OK

OK

aten::ones

OK

OK

aten::ones_like

OK

OK

aten::permute

OK

OK

aten::pow

OK

OK

aten::pow_

OK

OK

aten::prelu

OK

OK

aten::prelu_

OK

OK

aten::reciprocal

OK

OK

aten::reciprocal_

OK

OK

aten::reflection_pad1d

OK

OK

aten::reflection_pad2d

OK

OK

aten::relu

OK

OK

aten::relu_

OK

OK

aten::repeat

OK

OK

aten::reshape

OK

OK

aten::reshape_

OK

OK

torchvision::roi_align

OK

OK

caffe2::RoIAlign

OK

OK

aten::rsqrt

OK

OK

aten::rsqrt_

OK

OK

aten::ScalarImplicit

OK

OK

aten::select

OK

OK

aten::selu

OK

OK

aten::selu_

OK

OK

aten::sigmoid

OK

OK

aten::sigmoid_

OK

OK

aten::silu

OK

OK

aten::silu_

OK

OK

aten::sin

OK

OK

aten::sin_

OK

OK

aten::size

OK

OK

aten::slice

OK

OK

aten::softmax

OK

OK

aten::softplus

OK

OK

aten::softshrink

OK

OK

aten::sort

OK

OK

aten::split

OK

OK

aten::split_with_sizes

OK

OK

aten::sqrt

OK

OK

aten::sqrt_

OK

OK

aten::squeeze

OK

OK

aten::squeeze_

OK

OK

aten::stack

OK

OK

aten::sub

OK

OK

aten::sub_

OK

OK

aten::sum

OK

OK

aten::t

OK

OK

aten::t_

OK

OK

aten::tanh

OK

OK

aten::tanh_

OK

OK

aten::threshold

OK

OK

aten::threshold_

OK

OK

aten::to

OK

OK

aten::topk

OK

OK

aten::transpose

OK

OK

aten::transpose_

OK

OK

aten::true_divide

OK

OK

aten::true_divide_

OK

OK

aten::type_as

OK

OK

aten::unfold

OK

OK

aten::unsqueeze

OK

OK

aten::upsample_nearest2d

OK

OK

aten::upsample_bilinear2d

OK

OK

aten::view

OK

OK

aten::view_

OK

OK

aten::view_as

OK

OK

aten::view_as_

OK

OK

aten::zero_

OK

OK

aten::zeros

OK

OK

aten::zeros_like

OK

OK

Pytorch已测试的model如下表所示:

Pytorch Model Support

Model Name

Float32

INT8

Alexnet

OK

OK

Darknet

OK

OK

Densenet

OK

OK

Inception v2/v3

OK

OK

Resnet 50/101/152

OK

OK

Mobilenet v2/v3

OK

OK

Squeezenet

OK

OK

Vggnet 16/19

OK

OK

DCGAN_generator

OK

SSD300 Mobilenet v2

OK

OK

SSD300 vgg16

OK

OK

Yolo v3/v4/v5

OK

OK

Face_alignment

OK

OK

OCR_EAST

OK

OK

Retrieval_NetVLAD

OK

Seg_deeplab

OK

Vot

OK

Ranknet

OK

Anchors_v1

OK

Eca mobilenet

OK

Lprnet

OK

Bert

OK

OK

Se resenet

OK

OK

Shufflenet

OK

OK

Stn

OK

Ctpn

OK

GAN

OK

Mnasnet

OK

OK

Slowfast

OK

OK

Anchors

OK

CCN

OK

OK

GRU

OK

OK

CRNN

OK

OK

Retinaface

OK

OK

Osd

OK

MxNet支持情况

MxNet目前支持的版本为: <= 1.7.0。

已支持的算子如下表所示(也可通过命令`python3 -m bmnetm –list_ops`列出当前支持算子):

MxNet Ops Support

Ops Name

Float32

INT8

Flatten

OK

OK

FullConnected

OK

OK

SoftmaxOutput

OK

OK

softmax

OK

OK

Pooling

OK

OK

Activation

OK

OK

LeakyReLU

OK

OK

sigmoid

OK

OK

exp

OK

Convolution

OK

OK

Deconvolution

OK

OK

BatchNorm

OK

OK

max

OK

OK

elemwise_add

OK

OK

elemwise_mul

OK

OK

elemwise_sub

OK

OK

Reshape

OK

OK

Concat

OK

OK

LRN

OK

OK

transpose

OK

OK

slice

OK

OK

slice_axis

OK

OK

broadcast_mul

OK

OK

broadcast_div

OK

OK

broadcast_plus

OK

OK

broadcast_minus

OK

OK

broadcast_sub

OK

OK

broadcast_add

OK

OK

broadcast_maximum

OK

OK

broadcast_minimum

OK

OK

broadcast_greater

OK

OK

broadcast_greater_equal

OK

OK

broadcast_lesser

OK

OK

broadcast_lesser_equal

OK

OK

broadcast_equal

OK

OK

broadcast_not_equal

OK

OK

expand_dims

OK

OK

Pad

OK

OK

contrib_AdaptiveAvgPooling2D

OK

contrib_BilinearResize2D

OK

clip

OK

OK

BlockGrad

OK

_plus_scalar

OK

OK

_sub_scalar

OK

OK

_minus_scalar

OK

OK

_mul_scalar

OK

OK

_div_scalar

OK

OK

_maximum_scalar

OK

OK

_minumum_scalar

OK

OK

_greater_scalar

OK

OK

_greater_equal_scalar

OK

OK

_equal_scalar

OK

OK

_not_equal_scalar

OK

OK

SliceChannel

OK

OK

slice_like

OK

ones_like

OK

OK

zeros_like

OK

OK

_arange

OK

OK

where

OK

L2Normalization

OK

OK

shape_array

OK

OK

reverse

OK

tile

OK

OK

repeat

OK

OK

stack

OK

OK

_contrib_ROIAlign

OK

_contrib_box_nms

OK

Cast

OK

OK

SwapAxis

OK

OK

InstanceNorm

OK

OK

squeeze

OK

OK

argsort

OK

gather_nd

OK

UpSampling

OK

topk

OK

crop

OK

relu

OK

equal

OK

broadcast_like

OK

MxNet已测试的model如下表所示:

MxNet Model Support

Model Name

Float32

INT8

Inception_v3

OK

OK

Mobilenet v1/v2

OK

OK

Nasnet

OK

OK

Senet

OK

OK

Se_resnet50

OK

OK

Se_resnext50

OK

OK

Resnet50_v1

OK

OK

Resnet50_v2

OK

OK

Resnext_50

OK

OK

Densenet121

OK

OK

Googlenet

OK

OK

Yolo

OK

OK

Alexnet

OK

OK

TSN

OK

Nin

OK

Vggnet16

OK

OK

Squeezenet

OK

OK

fcn_resnet50

OK

residual_attention_net

OK

Yolov3_darknet53

OK

OK

SSD_512_resnet50

OK

OK

SSD_512_mobilenet

OK

OK

SSD_512_vgg16

OK

OK

faster_rcnn_resnet50

OK

deeplabv3_resnet101

OK

center_net_resnet18_v1b

OK

arcface_r100_v1

OK

alpha_pose_resnet101_v1b

OK

Darknet支持情况

Darknet无版本限制,只要是Github上的官方开源版本即可。

Darknet已支持的层如下表所示:

Darknet Layer Support

Layer Name

Float32

INT8

Activate

OK

OK

Route

OK

OK

Upsample

OK

OK

Sum

OK

OK

Batchnorm

OK

OK

Scale

OK

OK

Convolution

OK

OK

Connected

OK

OK

Maxpool

OK

OK

Softmax

OK

OK

Crop

OK

OK

Reorg

OK

OK

Shortcut

OK

OK

Yolo

OK

OK

Region

OK

OK

Darknet已测试的model如下表所示:

Darknet Model Support

Model Name

Float32

INT8

Yolo v2

OK

OK

Yolo v3

OK

OK

Yolo v4

OK

OK

Yolov3_tiny

OK

OK

Vggnet16

OK

OK

Alexnet

OK

OK

ONNX支持情况

ONNX目前支持的版本为: == 1.7.0。

ONNX已支持的算子如下表所示(op_set==12, 通过命令`python3 -m bmneto –list_ops`查看):

ONNX Layer Support

Layer Name

Float32

INT8

Abs

OK

OK

Acos

OK

OK

Acosh

OK

OK

Add

OK

OK

Asin

OK

OK

Asinh

OK

OK

Atanh

OK

OK

AveragePool

OK

OK

BatchNormalization

OK

OK

Cast

OK

OK

Ceil

OK

OK

Clip

OK

OK

Concat

OK

OK

Constant

OK

OK

ConstantOfShape

OK

OK

Conv

OK

OK

ConvTranspose

OK

OK

Cos

OK

OK

Cosh

OK

OK

Div

OK

OK

Elu

OK

OK

Equal

OK

OK

Erf

OK

OK

Exp

OK

OK

Expand

OK

OK

Flatten

OK

OK

Floor

OK

OK

GRU

OK

OK

Gather

OK

OK

GatherND

OK

OK

Gemm

OK

OK

GlobalAveragePool

OK

OK

GlobalMaxPool

OK

OK

Greater

OK

OK

GreaterOrEqual

OK

OK

Identity

OK

OK

IsInf

OK

OK

LSTM

OK

OK

LeakyRelu

OK

OK

Less

OK

OK

LessOrEqual

OK

OK

Log

OK

OK

MatMul

OK

OK

Max

OK

OK

MaxPool

OK

OK

Mean

OK

OK

Min

OK

OK

Mul

OK

OK

NonMaxSuppression

OK

OK

NonZero

OK

OK

Pad

OK

OK

Pow

OK

OK

Reciprocal

OK

OK

ReduceMax

OK

OK

ReduceMean

OK

OK

ReduceMin

OK

OK

ReduceProd

OK

OK

ReduceSum

OK

OK

Relu

OK

OK

Reshape

OK

OK

Resize

OK

OK

RoiAlign

OK

OK

Round

OK

OK

ScatterND

OK

OK

Shape

OK

OK

Sigmoid

OK

OK

Sign

OK

OK

Sin

OK

OK

Sinh

OK

OK

Slice

OK

OK

Softmax

OK

OK

Softplus

OK

OK

Split

OK

OK

Sqrt

OK

OK

Squeeze

OK

OK

Sub

OK

OK

Sum

OK

OK

Tan

OK

OK

Tanh

OK

OK

Tile

OK

OK

TopK

OK

OK

Transpose

OK

OK

Unsqueeze

OK

OK

Where

OK

OK

ArgMin

OK

OK

ArgMax

OK

OK

ONNX已测试的model如下表所示:

ONNX Model Support

Model Name

Float32

INT8

Yolov4

OK

OK

Yolov5s

OK

OK

Resnet

OK

OK

SSD Resnet34

OK

OK

Postnet

OK

OK

PADDLE支持情况

PADDLE目前支持的版本为: <= 2.1.1。

PADDLE已支持的层如下表所示:

PADDLE Layer Support

Layer Name

Float32

INT8

abs

OK

OK

arg_max

OK

OK

arg_min

OK

OK

batch_norm

OK

OK

bilinear_interp

OK

OK

bilinear_interp_v2

OK

OK

cast

OK

OK

clip

OK

OK

concat

OK

OK

conv2d

OK

OK

conv2d_transpose

OK

OK

deformable_conv

OK

OK

depthwise_conv2d

OK

OK

dropout

OK

OK

elementwise_add

OK

OK

elementwise_div

OK

OK

elementwise_mul

OK

OK

elementwise_pow

OK

OK

elementwise_sub

OK

OK

expand_v2

OK

OK

fill_constant

OK

OK

fill_constant_batch_size_like

OK

OK

hard_sigmoid

OK

OK

hard_swish

OK

OK

leaky_relu

OK

OK

log

OK

OK

matmul

OK

OK

matmul_v2

OK

OK

matrix_nms

OK

OK

max_pool2d_with_index

OK

OK

mul

OK

OK

multiclass_nms

OK

OK

multiclass_nms2

OK

OK

multiclass_nms3

OK

OK

nearest_interp

OK

OK

nearest_interp_v2

OK

OK

pool2d

OK

OK

range

OK

OK

relu

OK

OK

reshape

OK

OK

reshape2

OK

OK

rnn

OK

OK

scale

OK

OK

shape

OK

OK

sigmoid

OK

OK

slice

OK

OK

softmax

OK

OK

split

OK

OK

squeeze2

OK

OK

transpose

OK

OK

transpose2

OK

OK

yolo_box

OK

OK

PADDLE已测试的model如下表所示:

PADDLE Model Support

Model Name

Float32

INT8

Yolov3

OK

OK

Resnet

OK

OK

Mobilenet

OK

OK