BMRuntime 示例代码¶
Example with basic C interface¶
本节通过举例来介绍runtime C接口的使用,一个是通用的例子,可以在PCIE或者SoC上使用;另一个使用mmap方式,只能在SoC上使用
Common Example¶
范例说明:
创建bm_handle以及runtime实例
加载bmodel,该模型中有一个testnet网络,有2个输入,2个输出
准备input tensors,包括每个input的shape和数据
启动推理运算
推理结束后将在output_tensors中结果数据拷贝到系统内存
退出程序前,释放device mem、runtime实例、bm_handle
需要注意,范例中将output的数据通过bm_memcpy_s2d_partial接口拷贝到系统内存,而不是用bm_memcpy_s2d接口,原因在于前者指定了tensor的大小,后者是按照device mem大小整个拷贝。output tensor的实际大小是小于或等于device mem大小的,所以使用bm_memcp_s2d有可能内存溢出。所以推荐用bm_memcpy_x2x_partial接口,不要使用bm_memcpy_x2x接口。
#include "bmruntime_interface.h"
void bmrt_test() {
// request bm_handle
bm_handle_t bm_handle;
bm_status_t status = bm_dev_request(&bm_handle, 0);
assert(BM_SUCCESS == status);
// create bmruntime
void *p_bmrt = bmrt_create(bm_handle);
assert(NULL != p_bmrt);
// load bmodel by file
bool ret = bmrt_load_bmodel(p_bmrt, "testnet.bmodel");
assert(true == ret);
auto net_info = bmrt_get_network_info(p_bmrt, "testnet");
assert(NULL != net_info);
// init input tensors
bm_tensor_t input_tensors[2];
status = bm_malloc_device_byte(bm_handle, &input_tensors[0].device_mem,
net_info->max_input_bytes[0]);
assert(BM_SUCCESS == status);
input_tensors[0].dtype = BM_INT8;
input_tensors[0].st_mode = BM_STORE_1N;
status = bm_malloc_device_byte(bm_handle, &input_tensors[1].device_mem,
net_info->max_input_bytes[1]);
assert(BM_SUCCESS == status);
input_tensors[1].dtype = BM_FLOAT32;
input_tensors[1].st_mode = BM_STORE_1N;
// init output tensors
bm_tensor_t output_tensors[2];
status = bm_malloc_device_byte(bm_handle, &output_tensors[0].device_mem,
net_info->max_output_bytes[0]);
assert(BM_SUCCESS == status);
status = bm_malloc_device_byte(bm_handle, &output_tensors[1].device_mem,
net_info->max_output_bytes[1]);
assert(BM_SUCCESS == status);
// before inference, set input shape and prepare input data
// here input0/input1 is system buffer pointer.
input_tensors[0].shape = {2, {1,2}};
input_tensors[1].shape = {4, {4,3,28,28}};
bm_memcpy_s2d_partial(bm_handle, input_tensors[0].device_mem, (void *)input0,
bmrt_tensor_bytesize(&input_tensors[0]));
bm_memcpy_s2d_partial(bm_handle, input_tensors[1].device_mem, (void *)input1,
bmrt_tensor_bytesize(&input_tensors[1]));
ret = bmrt_launch_tensor_ex(p_bmrt, "testnet", input_tensors, 2,
output_tensors, 2, true, false);
assert(true == ret);
// sync, wait for finishing inference
bm_thread_sync(bm_handle);
/**************************************************************/
// here all output info stored in output_tensors, such as data type, shape, device_mem.
// you can copy data to system memory, like this.
// here output0/output1 are system buffers to store result.
bm_memcpy_d2s_partial(bm_handle, output0, output_tensors[0].device_mem,
bmrt_tensor_bytesize(&output_tensors[0]));
bm_memcpy_d2s_partial(bm_handle, output1, output_tensors[1].device_mem,
bmrt_tensor_bytesize(&output_tensors[1]));
...... // do other things
/**************************************************************/
// at last, free device memory
for (int i = 0; i < net_info->input_num; ++i) {
bm_free_device(bm_handle, input_tensors[i].device_mem);
}
for (int i = 0; i < net_info->output_num; ++i) {
bm_free_device(bm_handle, output_tensors[i].device_mem);
}
bmrt_destroy(p_bmrt);
bm_dev_free(bm_handle);
}
MMAP Example¶
本例功能和上个例子相同,但没有进行device mem数据的拷入和拷出,而是采用mmap方式映射给应用程序直接访问。效率比上例高,但只能在SoC下使用。
#include "bmruntime_interface.h"
void bmrt_test() {
// request bm_handle
bm_handle_t bm_handle;
bm_status_t status = bm_dev_request(&bm_handle, 0);
assert(BM_SUCCESS == status);
// create bmruntime
void *p_bmrt = bmrt_create(bm_handle);
assert(NULL != p_bmrt);
// load bmodel by file
bool ret = bmrt_load_bmodel(p_bmrt, "testnet.bmodel");
assert(true == ret);
auto net_info = bmrt_get_network_info(p_bmrt, "testnet");
assert(NULL != net_info);
bm_tensor_t input_tensors[2];
bmrt_tensor(&input_tensors[0], p_bmrt, BM_INT8, {2, {1,2}});
bmrt_tensor(&input_tensors[1], p_bmrt, BM_FLOAT32, {4, {4,3,28,28}});
void *input[2];
status = bm_mem_mmap_device_mem(bm_handle, &input_tensors[0].device_mem,
(uint64_t*)&input[0]);
assert(BM_SUCCESS == status);
status = bm_mem_mmap_device_mem(bm_handle, &input_tensors[1].device_mem,
(uint64_t*)&input[1]);
assert(BM_SUCCESS == status);
// write input data to input[0], input[1]
......
// flush it
status = bm_mem_flush_device_mem(bm_handle, &input_tensors[0].device_mem);
assert(BM_SUCCESS == status);
status = bm_mem_flush_device_mem(bm_handle, &input_tensors[1].device_mem);
assert(BM_SUCCESS == status);
// prepare output tensor, and launch
assert(net_info->output_num == 2);
bm_tensor_t output_tensors[2];
ret = bmrt_launch_tensor(p_bmrt, "testnet", input_tensors,2,
output_tensors, 2);
assert(true == ret);
// sync, wait for finishing inference
bm_thread_sync(bm_handle);
/**************************************************************/
// here all output info stored in output_tensors, such as data type, shape, device_mem.
// you can access system memory, like this.
void * output[2];
status = bm_mem_mmap_device_mem(bm_handle, &output_tensors[0].device_mem,
(uint64_t*)&output[0]);
assert(BM_SUCCESS == status);
status = bm_mem_mmap_device_mem(bm_handle, &output_tensors[1].device_mem,
(uint64_t*)&output[1]);
assert(BM_SUCCESS == status);
status = bm_mem_invalidate_device_mem(bm_handle, &output_tensors[0].device_mem);
assert(BM_SUCCESS == status);
status = bm_mem_invalidate_device_mem(bm_handle, &output_tensors[1].device_mem);
assert(BM_SUCCESS == status);
// do other things
// users can access output by output[0] and output[1]
......
/**************************************************************/
// at last, unmap and free device memory
for (int i = 0; i < net_info->input_num; ++i) {
status = bm_mem_unmap_device_mem(bm_handle, input[i],
bm_mem_get_device_size(input_tensors[i].device_mem));
assert(BM_SUCCESS == status);
bm_free_device(bm_handle, input_tensors[i].device_mem);
}
for (int i = 0; i < net_info->output_num; ++i) {
status = bm_mem_unmap_device_mem(bm_handle, output[i],
bm_mem_get_device_size(output_tensors[i].device_mem));
assert(BM_SUCCESS == status);
bm_free_device(bm_handle, output_tensors[i].device_mem);
}
bmrt_destroy(p_bmrt);
bm_dev_free(bm_handle);
}
Example with basic C++ interface¶
本节通过举例来介绍runtime C++接口的使用,一个是通用的例子,可以在PCIE或者SoC上使用;另一个使用mmap方式,只能在SoC上使用
Common Example¶
范例说明:
创建bm_handle以及context实例
加载bmodel,该模型中有一个testnet网络,有2个输入,2个输出
准备input tensors,包括每个input的shape和数据
启动推理运算
推理结束后将在output_tensors中结果数据拷贝到系统内存
退出程序前,释放bm_handle
对Context的”testnet”网络实例化了2个Network,以此表明这几点:
当Network不指定stage的时候,每个input都需要Reshape来设置输入的shape;当Network指定stage的时候,按照stage的shape来配置input,不需要用户再Reshape
同一个网络名,是可以被实例化成多个Network,它们之间没有任何影响。同理每个Network可以多线程中推理
#include "bmruntime_cpp.h"
using namespace bmruntime;
void bmrt_test()
{
// create Context
Context ctx;
// load bmodel by file
bm_status_t status = ctx.load_bmodel("testnet.bmodel");
assert(BM_SUCCESS == status);
// create Network
Network net1(ctx, "testnet"); // may use any stage
Network net2(ctx, "testnet", 0); // use stage[0]
/**************************************************************/
// net1 example
{
// prepare input tensor, assume testnet has 2 input
assert(net1.info()->input_num == 2);
auto &inputs = net1.Inputs();
inputs[0]->Reshape({2, {1, 2}});
inputs[1]->Reshape({4, {4, 3, 28, 28}});
// here input0/input1 is system buffer pointer to input datas
inputs[0]->CopyFrom((void *)input0);
inputs[1]->CopyFrom((void *)input1);
// do inference
status = net1.Forward();
assert(BM_SUCCESS == status);
// here all output info stored in output_tensors, such as data type, shape, device_mem.
// you can copy data to system memory, like this.
// here output0/output1 are system buffers to store result.
auto &outputs = net1.Outputs();
outputs[0]->CopyTo(output0);
outputs[1]->CopyTo(output1);
...... // do other things
}
/**************************************************************/
// net2 example
// prepare input tensor, assume testnet has 2 input
{
assert(net2.info()->input_num == 2);
auto &inputs = net2.Inputs();
inputs[0]->CopyFrom((void *)input0);
inputs[1]->CopyFrom((void *)input1);
status = net2.Forward();
assert(BM_SUCCESS == status);
// here all output info stored in output_tensors
auto &outputs = net2.Outputs();
...... // do other things
}
}
MMAP Example¶
本例只实例化了一个Network,主要是说明mmap,如何使用。
#include "bmruntime_cpp.h"
using namespace bmruntime;
void bmrt_test()
{
// create Context
Context ctx;
// load bmodel by file
bm_status_t status = ctx.load_bmodel("testnet.bmodel");
assert(BM_SUCCESS == status);
// create Network
Network net(ctx, "testnet", 0); // use stage[0]
// prepare input tensor, assume testnet has 2 input
assert(net.info()->input_num == 2);
auto &inputs = net.Inputs();
void *input[2];
bm_handle_t bm_handle = ctx.handle();
status = bm_mem_mmap_device_mem(bm_handle, &(inputs[0]->tensor()->device_mem),
(uint64_t*)&input[0]);
assert(BM_SUCCESS == status);
status = bm_mem_mmap_device_mem(bm_handle, &(inputs[1]->tensor()->device_mem),
(uint64_t*)&input[1]);
assert(BM_SUCCESS == status);
// write input data to input[0], input[1]
......
// flush it
status = bm_mem_flush_device_mem(bm_handle, &(inputs[0]->tensor()->device_mem));
assert(BM_SUCCESS == status);
status = bm_mem_flush_device_mem(bm_handle, &(inputs[1]->tensor()->device_mem));
assert(BM_SUCCESS == status);
status = net.Forward();
assert(BM_SUCCESS == status);
// here all output info stored in output_tensors
auto &outputs = net.Outputs();
// mmap output
void * output[2];
status = bm_mem_mmap_device_mem(bm_handle, &(outputs[0]->tensor()->device_mem),
(uint64_t*)&output[0]);
assert(BM_SUCCESS == status);
status = bm_mem_mmap_device_mem(bm_handle, &(outputs[1]->tensor()->device_mem),
(uint64_t*)&output[1]);
assert(BM_SUCCESS == status);
// invalidate it
status = bm_mem_invalidate_device_mem(bm_handle, &(outputs[0]->tensor()->device_mem));
assert(BM_SUCCESS == status);
status = bm_mem_invalidate_device_mem(bm_handle, &(outputs[1]->tensor()->device_mem));
assert(BM_SUCCESS == status);
// user can access output by output[0] and output[1]
......
// at last, unmap bm_handle
status = bm_mem_unmap_device_mem(bm_handle, input[0],
bm_mem_get_device_size(inputs[0]->tensor()->device_mem));
assert(BM_SUCCESS == status);
status = bm_mem_unmap_device_mem(bm_handle, input[1],
bm_mem_get_device_size(inputs[1]->tensor()->device_mem));
assert(BM_SUCCESS == status);
status = bm_mem_unmap_device_mem(bm_handle, output[0],
bm_mem_get_device_size(outputs[0]->tensor()->device_mem));
assert(BM_SUCCESS == status);
status = bm_mem_unmap_device_mem(bm_handle, output[1],
bm_mem_get_device_size(outputs[1]->tensor()->device_mem));
assert(BM_SUCCESS == status);
}